

4 • MXDJ.COM 10 • 2004

The Relevant CSS Panel
Fixing some problems
by dave mcfarland

Component-Based RAD
The best of two worlds
by art phillips

Typography, Part 2
Keeping a firm hand on your text
by ron rockwell

ActionScript
A Little OOP, CF Style
by john bland

Video The Way Your
“Ancestors” Intended
Reuse and simplify
by chuck neal

october 2004

12

22

38

Fireworks Image
Optimization Basics
Looking your best
by joyce j. evans

34

46

54

16 xile
Cartoon
by louis f. cuffari

7 Where Are
We Going?
A move to the
future
by charles e. brown

17 Extension of the Month
Cartweaver 2.0
by dave mcfarland

18 A New Role for Flash
Hurray! Flex is here, but you still need
your Flash developers.
by peter ent

28 Illustrating with
Flash MX 2004
Book Excerpt: Game Techniques
by robert firebaugh

10 The Need to
Know
The Macromedia
RSS Feeds
by christian cantrell

58 vanguard
Inner Meaning
by michele dauria

MXDJ.COM • 7

s a Web developer, trainer, and

conference speaker, the ques-

tion I am asked most frequent-

ly is, “Where is this industry going?” My

answer is one simple word: Flash!!!

In my opinion, client-side technolo-

gies, such as HTML and related scripts,

have run their course and are relics of a

past state of technological evolution.

Even many of today’s dynamic technolo-

gies are just trying to use these past con-

cepts in brand new ways. However, the

results are often far from satisfactory. If

you think about it, the results of most of

these technologies are just freshly writ-

ten static HTML pages.

The emergence of Flash MX 2004

was a major leap forward in Web design.

No longer is Flash a program for novelty

and eye-catching animations; it is now, in

my opinion, the most powerful and for-

ward-looking Web design tool on the

market today. I can say with assurance

that Flash MX 2004 is only the beginning;

As I look down the road I see a lot of

exciting things happening over the next

year.

This does not mean we should aban-

don existing technologies. As technology

professionals, we must keep a firm eye

on the future because that future could

have a very real impact on how we devel-

op today. We want to develop today’s

technological projects so they can easily

adapt to that future. As author Tom

Green recently said, “We must first define

what we mean by the word dynamic.”

This is certainy a word that is niw in tran-

sistion.

It is in this light that I take over as

editor-in-chief of this publication.

I see MX Developer’s Journal as a

powerful tool to help you achieve that

goal. Therefore, you will be seeing more

articles that focus on where we are going

instead of rehashing where we have

been. I also want to present more articles

showing how many of these diverse

technologies fit together.

Because of Flash’s embrace of

object-oriented concepts, we are now

seeing the emergence of a potentially

large third-party market. I will encourage

our contributors to not only review these

products, but to show you how to incor-

porate them into your present workflow.

Finally, it is my goal that MXDJ be a

teaching magazine. I would like to

develop coordinated articles that could

serve as mini-courses. I will personally

be starting a series that will discuss

ActionScript 2 right from the beginning.

Each month, I will build on the previous

month’s article.

Finally, this is not my magazine; this

is not SYS-CON’s magazine, this is not

Macromedia’s magazine: this is your mag-

azine. You, the readers, are the ones on

the front line and only you know what

your needs are. To that end, my e-mail

door is always open. Please feel free to

contact me at charles@sys-con.com at

any time to express your thoughts. You

have my promise that I will listen.

With this edition, I would like to wel-

come three new editors to MXDJ.

Brian Eubanks will be our new Flash

editor. Brian is the founder of Eu

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Editor-in-Chief
Charles E. Brown charles@sys-con.com
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Ron Rockwell
Louis F. Cuffari
ColdFusion Editor
Robert Diamond
Director Editor
Andrew Phelps

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editor
Gail Schultz, 201 802-3043
gail@sys-con.com

Editors
Jamie Matusow, 201 802-3042
jamie@sys-con.com
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Assistant Editor
Natalie Charters, 201 802-3041
natalie@sys-con.com

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

fro
m

 th
e

 e
d

ito
ra

A move to the future
by charles e. brown

Where Are We Going?

“As technology professionals,
we must keep a firm
eye on the future”

8 • MXDJ.COM

fr
o

m
 t

h
e

 e
d

it
o

r
SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com
Andrea Boden, 201 802-3034
andrea@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Martin Wezdecki 201 802-3045
martin@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Shannon Rymsza, 201 802-3082
shannon@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

Technologies, Inc., a consulting and train-

ing firm based in Northern Virginia. Eu

Technologies currently provides Java,

XML, and Flash consulting and training

services to clients in the Mid-Atlantic

region. Recent clients have included the

New York Stock Exchange, government

agencies, and public and private firms.

Brian holds a master of science degree in

computer science from George Mason

University.

Our new Fireworks editor is Joyce

J. Evans. Joyce is a training veteran with

over 10 years of experience in educa-

tional teaching, tutorial development,

and Web design. She has been asked to

speak at conferences such as

Macromedia MAX 2003 and TODCON.

Joyce has received Editors Choice

Awards for her book Fireworks 4 F/X and

Design and has authored several com-

puter books including Dreamweaver MX

Complete Course, Web Design Complete

Course, and Fireworks MX: Zero to Hero.

Joyce is a Team Macromedia

Volunteer and her work is also featured in

the Macromedia

Design/Developer

center and MXDJ

(Volume 2, issue

2). Her clients

include Century

21, a prominent

college in

Florida, a sub-

contractor for a local service provider,

along with actively teaching new stu-

dents how to use the Macromedia Studio

products.

Andrew M. Phelps will be heading

up the Director section. Andrew is an

assistant professor in the B. Thomas

Golisano College of Computing and

Information Sciences at the Rochester

Institute of Technology in Rochester, NY

(http://andysgi.rit.edu/>http://andysgi.rit.

edu). He has an academic background

in information technology, as well as in

traditional fine arts and computer anima-

tion. His work using Director has been

featured at the Director-Online User’s

Group (DOUG), as well as the DevNet

Center at Macromedia. He regularly

teaches coursework in multimedia pro-

gramming, game programming, and sim-

ulation/visualization.

We live in an exciting time because

we are about to see the realization of

nearly 25 years of promise. I firmly

believe that this journal will be your

guide to that future.

I look forward to hearing from each

and every one of you.

And now on to the future!

Charles E. Brown is the editor-in-chief of

MX Developer’s Journal. He is the

author of Fireworks MX From Zero to

Hero and Beginning Dreamweaver MX.

He also contributed to The Macromedia

Studio MX Bible. Charles is a sen-

ior trainer for FMC on the MX

product family.

10 • MXDJ.COM 10 • 2004

eed an easy way to keep your

favorite software applications

up to date? Ever miss out on a

newly released update patch, an impor-

tant TechNote, or an urgent security bul-

letin? How do you know when

Macromedia has published new

Developer Center content that might

show you some new timesaving tech-

niques, or introduce you to an important

emerging technology?

Staying on top of the latest official

development news is not easy. And what

about all the hundreds of interesting

weblogs out there? In my opinion, there

are two ways to stay current with the lat-

est information: the easy way, and the

hard way.

Staying Informed…the
Hard Way

The hard way is to create bookmarks

for all the different content you are inter-

ested in and set aside time to visit dozens

of different locations online everyday.

Going out and gathering information

manually in this fashion is not particularly

efficient for several reasons:

• Downloading takes time. Even over

the fastest of connections, you still

have to wait a fair amount of time for

content to download, and the content

that takes the longest to download

(ads, graphics, etc.) is usually the con-

tent you are least interested in seeing.

• You have to figure out each new

interface. Each of the dozens of sites I

keep up with has a dramatically differ-

ent interface with very different navi-

gation. Although most of us are pretty

accustomed to the inconsistency of

the Internet by now, the time it takes

to adapt to new and often very con-

gested interfaces (as product and

news sites tend to be) does add up.

• Other tasks take priority. I don't

know about you, but when I'm busy,

making my daily rounds to news sites

and weblogs is often the first thing to

go on the back burner, and, all too

often, dropped entirely.

• Once it’s gone, it’s gone. When you

miss an important headline out there,

for all intents and purposes it’s usually

pretty much gone. How often do you

search through the archives of a news

site, trying to catch up on articles you

might have missed? There’s so much

new information out there on an

hourly and daily basis; who has time to

review the old stuff?

Staying Informed…the
Smart Way

Fortunately, the smart way to gather

news and information addresses all of

these issues. Rather than having to go

out and get news and information your-

self, why not let it come to you? Wouldn’t

it be nice to have all the most important

product information and news headlines

right on your desktop waiting for you, or

all on a single Web page? With RSS (and a

good RSS aggregator), that’s exactly what

you get.

RSS is an XML data syndication for-

mat. There’s some disagreement as to

what RSS actually stands for – whether

it’s “Really Simple Syndication,”“Rich Site

Summary’, or “RDF Site Summary” – and

there are enough versions of RSS and

similar data formats like Atom out there

that you may not care to get into the

specifics of the data format itself. The

important thing is what it can do for you.

The RSS data syndication format lets

sites syndicate content in such a way that

other applications can easily pick it up,

parse it, reorganize it, and republish it in

just about any format. What that means

to you is that rather than spending time

going out and gathering information

yourself, an application gathers it for you.

When you have time to read through it,

it's all right there – waiting for you, all in

one place, and in a nice, consistent for-

mat.

Not surprisingly, the advantages of

RSS are basically the opposite of the dis-

advantages listed above:

1. It's fast. RSS is a very lean XML format,

so even over slow connections huge

amounts of data can be collected very

quickly.

2. You can choose an interface that’s

The Need to Know

The Macromedia RSS Feeds

by christian cantrell

n

rs
s

“All the information
included in our

product feeds is
purely technical or

educational in nature”

right for you. RSS aggregators present

data from many disparate sources in a

single, consistent user interface.

3. You don’t have to remember, or make

the time, to go out and gather the

information manually. True, you still

have to make the time to read it. (I’m

not aware of any technology that can

dump information directly into your

brain just yet.) But with all the news

and information sitting right there in

front of you in a single application, you

can read it in the time that you would

have spent simply gathering it from

various sources.

4. It’s easy to find “old” information. Most

aggregators archive information so if

you miss a day or two, you can easily

scan through “old” headlines and see if

you missed anything important.

About Aggregators
Generally speaking, there are two

types of aggregators: online or Web-

based, and local or desktop. Online

aggregators are Web applications that

gather information from all over the

Internet and present it in a Web interface,

while local aggregators present aggre-

gated information for you right on your

desktop. There are even various plug-ins

available that will allow you to add RSS

capabilities right to your browser; accord-

ing to Apple’s Web site, the next version

of Safari will actually have sophisticated

RSS functionality built right into it. There

are advantages and disadvantages to

both types of aggregators, so which you

use is completely a matter of personal

preference. I encourage you to try both

types and see which you are more com-

fortable with.

News sites and weblogs were the first

to start syndicating data through RSS,

but now there are RSS feeds available

that contain all kinds of information from

real-time earthquake statistics to forum

threads to MP3 music catalogs. At this

point, RSS is being used to syndicate just

about any kind of information you can

imagine.

Getting Started with the
Macromedia Product RSS
Feeds

Macromedia has been tapping into

the power and convenience of RSS and

weblogs in various ways for about two

years now. However, we have recently

taken our investment to the next level

with the new Macromedia Product RSS

Feeds. We have been looking at ways in

which we can communicate with our cus-

tomers more efficiently and conveniently,

and help them reduce the amount of

time they spend looking for information

on our Web site. RSS is a natural fit.

Rather than requiring customers to visit

macromedia.com on a regular basis to

look for product updates, security bul-

letins, and TechNotes, we decided to use

RSS to syndicate all this information for

almost all of our products. And we

include relevant Developer Center con-

tent in the feeds as well.

The Macromedia Product RSS Feeds

are product specific, which means you

can subscribe to just those feeds you are

interested in. We are currently covering

18 different products and will continue to

add feeds as we see the need. We update

each feed within an hour of the release of

product information on macromedia

.com, so the information is pretty close to

real time. All the information included in

our product feeds is purely technical or

educational in nature as well – we never

syndicate marketing messaging or prod-

uct offers.

If you use any Macromedia products

on a regular basis, I highly recommend

that you subscribe to their corresponding

product RSS feeds using the online or

desktop aggregator of your choice. The

Macromedia Product RSS Feed page con-

tains additional detailed information on

RSS, the URLs to all the product RSS

feeds, and information on how to get

started aggregating feeds quickly and

easily. Once you get into RSS, however,

be careful, as it can be extremely addic-

tive. I'm currently aggregating well over

200 feeds, and I seem to add more each

week. Thanks to the efficiency of RSS,

however, I actually have enough time to

read them.

Christian Cantrell is the Macromedia

Server Community Manager. He has

been developing large-scale, Web-

based applications in ColdFusion, Java,

JSP, and Macromedia Flash for the last

five years. Christin is the author of

numerous tutorials and whitepapers, and

is coauthor of Flash Enabled: Flash

Design & Development for Devices.

MXDJ
Section Editors

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing Manual, Dave
can be relied upon to bring Dreamweaver MX to life for MXDJ

readers with clarity, authority, and good humor.

Flash
Brian Eubanks

Brian Eubanks is the founder of Eu Technologies, Inc., a con-
sulting and training firm based in Northern Virginia. Eu

Technologies currently provides Java and XML consulting and
training services to clients in the Mid-Atlantic region. Recent

clients have included the New York Stock Exchange, govern-
ment agencies, and public and private firms.

Fireworks
Joyce J. Evans

Joyce J. Evans is a training veteran with over 10 years of
experience in educational teaching, tutuorial development,

and Web design. She has presented at conferences such as
Macromedia MAX 2003 and TODCON. Joyce has authored

books including Macromedia Studio MX 2004 Bible,
Dreamweaver MX 2004 Complete Course, and others. Joyce
is a Team Macromedia volunteer and her work is also featured

in the Macromedia Design/Developer center. Her Web site is
www.JoyceJEvans.com.

FreeHand
Ron Rockwell

Illustrator, designer, author, and Team Macromedia member,
Ron Rockwell lives and works with his wife, Yvonne, in the

Pocono Mountains of Pennsylvania. Ron is MXDJ’s FreeHand
editor and the author of FreeHand 10 f/x & Design, and coau-

thor of Studio MX Bible and the Digital Photography Bible. He
has Web sites at www.nidus-corp.com and

www.brainstormer.org.

Louis F. Cuffari
Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent most of his life
as a studio artist, including mediums from charcoal portraits to

oil/acrylic on canvas. In addition to studio art, he has been
involved in several motion picture projects in the facility of
directing, screenwriting, and art direction. Louis’s creative
works expand extensively into graphic design, and he has

expertise in both Web and print media. He is deputy art direc-
tor for SYS-CON Media and the designer

of MX Developer’s Journal.

ColdFusion
Robert Diamond

Vice president of information systems for
SYS-CON Media, Robert was named one of the "Top thirty
magazine industry executives under the age of 30" in Folio

magazine’s November 2000 issue. He holds a BS degree in
information management and technology from the School of

Information Studies at Syracuse University. www.robertdia-
mond.com

Director
Andrew Phelps

Andrew Phelps is an assistant professor in the B. Thomas
Golisano College of Computing and Information Sciences at

the Rochester Institute of Technology in Rochester, NY
(http://andysgi.rit.edu/>http://andysgi.rit.edu). He has an aca-
demic background in information technology, as well as tradi-

tional fine Aarts and computer animation. His work using
Director has been featured at the Director-Online User's

Group (DOUG) as well as the DevNet Center at Macromedia.
He regularly teaches coursework in multimedia programming,

game programming, and simulation/visualization.

10 • 2004 MXDJ.COM • 11

12 • MXDJ.COM 10 • 2004

 The Relevant

Fixing some of your CSS problems

by dave mcfarland

CSS
Panel

10 • 2004 MXDJ.COM • 13

C
ascading Style Sheets (CSS) can be confus-

ing. Not only do Web developers need to

know the different CSS properties, and the

sometimes bizarre ways that Web browsers render those

properties, there are times when CSS just doesn’t seem to

behave. You create a new class style – .highlight, for

example – that’s supposed to change the text color to

burgundy. But when you select the text and apply the

style nothing happens.

As you build more complex sites, with hundreds

of styles, this kind of problem seems to happen more

frequently. In most cases, the CSS is behaving just as

it’s supposed to – the problem is that any given style

sheet will often have styles that conflict in one or

more ways. Ferreting out these conflicts can be a

chore; fortunately, Dreamweaver MX 2004 introduced

a new tool -- the Relevant CSS panel – to help solve

these dilemmas.

When Styles Collide: Understanding
CSS Conflicts

One of the fundamental features of CSS is the way

styles can pass from one element to another. This

basic principle, known as inheritance, is a powerful

way to simplify formatting tasks. For example, in the

bad old days, when we used the tag to format

text, we had to wrap every piece of text with the

 tag. Even if you just wanted to use Arial for all

of the text on your page – headings, paragraphs, lists

– you’d have to use multiple tags. This signifi-

cantly increased the file size of a Web page and was a

lot of work (well not quite so much with

Dreamweaver).

CSS and inheritance makes this same task a snap.

With CSS, child elements inherit properties of their

parent elements; so, to apply a single font family to a

page, you merely assign a font family to the <body>

tag. Other elements on the page, such as headings

and paragraphs, inherit this property, so they too use

the same font.

Because of inheritance, we can set some global

properties for our page by merely styling the <body>

tag. Those properties are then inherited by child ele-

ments (well, not all properties are inherited, as you’ll

see below). Fortunately, you can override inheritance

by creating styles that apply in specific instances. For

example, say in general you want text on the page to

be bright blue and use the Arial font. But in some

cases, you’ll want to override this – for example, all

headlines should be fire engine red, and all bulleted

lists should be in Times New Roman. Create a style for

the <body> tag, and other styles for the <h1> and

 tags.

Not only is inheritance at work, but also another

feature of CSS – the cascade. The cascade governs

how interacting styles work. So in the example above,

the <h1> tag would inherit the font face from the

<body> tag, but would overrule the <body> tag’s

font color. It’s CSS ability to mix styles and properties

that gives pages a great deal of formatting finesse,

with very little code. But, the cascade is

also the source of many conflicts that

often seem bewildering.

Here’s a simple example that demon-

strates the kind of problems that fre-

quently pop up. Say you created a <div>

with an ID style of #content – perhaps

this <div> is used to lay out the main

story on a page. You want all the para-

graphs inside that div to be both bold

and red, so you create a style #content p

– this is a descendent selector that mere-

ly says any <p> tag inside an element

with the ID of content should be bold

and red (see Figure 1). Because you want

a single paragraph in that div to be blue

and not bolded, you create a class style

called .special. But when you apply it to a

paragraph in the div nothing happens.

What gives?

Resolving the Cascade:
Understanding Specificity

When a single element is affected by

multiple CSS styles, CSS provides rules for

dealing with these conflicts. Each CSS

style has what’s known as “specificity” – a

style with a higher specificity overrules a

style with lower specificity. As you know,

there are different types of styles – tag

styles, class styles, and ID styles. When

you define a style for a particular HTML

tag, like the <body> tag, that’s a tag style.

Class styles, which are preceded by a

period – .pullQuote, for example – are

applied manually, for example using the

Property Inspector or the Text menu’s CSS

styles submenu. IDs are similar to class

styles; but whereas a page can have mul-

tiple elements each with the same class

applied to it, an ID style should only be

applied once per page. IDs are preceded

by the # symbol – #banner, for example –

and are frequently used to indicate logi-

cal divisions in a page, such as a banner,

sidebar, or footer.

The type of style you use greatly

affects that style’s specificity. Here’s a sim-

ple method for determining a style’s

specificity. If it’s a tag style, the style has a

specificity of 1; a class style gets a speci-

ficity of 10; and an ID style has a specifici-

ty of 100. Say you created a Web page

with three styles: a tag style that defines

the text color for the <p> tag as green; a

class style, named .blue, with a text color

of blue; and #red, an ID style with a red

text color. All paragraphs on the page will

be green. But if you applied the .blue

style to one of those paragraphs, its text

would be blue – since a class style has

greater specificity (10) than a tag style (1).

If you then applied the ID #red to that

same paragraph (probably not some-

thing you’d normally do), that text will be

red – since ID styles trump class styles

(100 v. 10).

In this case, the style name – called a

“selector” in CSS speak – is actually com-

posed of a tag name and an ID. So say

you create an ID style of #red, another

style with the selector of p#red, and then

create a paragraph with an ID of red (<p

id=”red”). There are two styles in your

style sheet, #red and p#red. What hap-

pens if a rule in one style conflicts with a

rule in the other? In this case p#red wins,

because it has both an element (p with a

14 • MXDJ.COM 10 • 2004

fi
g

u
re

 I

fi
g

u
re

 2
fi

g
u

re
 3

fi
g

u
re

 4

16 • MXDJ.COM 10 • 2004

specificity of 1) and an ID (#red with a speci-

ficity of 100) – in other words, 101 vs. 100.

This really comes into play when you

begin to use descendent selectors (see Vol.

2, Issue 4). A descendent selector can nar-

row how a style is applied by defining the

context of an element. For example, in

Figure 1 the #content p style is a descen-

dent selector identifying only <p> tags that

also appear inside an element with the ID

of content. In this example, that style has a

specificity of 101 (an ID plus an element).

Now it’s easy to see why, in the earlier

example, applying the class style of .special

to one of the paragraphs inside the #con-

tent div has no effect. Because the selector

p.special is composed of one element (p)

and one class (.special), the specificity is just

11. Since 101 is more than 11, the #content

p style wins. To fix this situation, you could

just rewrite the p.special as #content p.spe-

cial – now that style has a specificity of 111.

Thankfully, Dreamweaver has a useful

diagnostic tool to help solve confusing

CSS conflicts like this.

The Relevant CSS Styles
Panel: A Great Friend

The Relevant CSS Styles panel (see

Figure 2) displays all styles that apply to a

particular selection (and lets you edit those

styles using the property list in the bottom

half of the panel). In other words, the list of

relevant styles indicates all styles from

which the current selection might inherit

formatting rules. For a complex design with

lots of styles this list can become quite

long. Fortunately, Dreamweaver makes it

easy to determine when there’s a conflict

and which rule has the greatest specificity.

The order in which the styles appear in

the Relevant CSS panel indicates the effect

of styles on the current selection – the last

style listed has greatest specificity. For

example, in Figure 2 the style #dateline

p#source has the greatest specificity, so its

properties will overrule any conflicts in any

of the other styles that appear in the list.
Dreamweaver also makes clear when

there’s a conflict between styles and why. If

you select a style in the Relevant CSS styles

panel and see a red line through a CSS

property name, that property is not inherit-

ed by the current selection. This happens

for two reasons. The first is that the proper-

ty is overruled by a style with the same

property but greater specificity. For exam-

ple, in Figure 3 a red line through the font-

size property indicates that the current

selection isn’t inheriting font size from this

style. Dreamweaver helps us out even

more by letting us know why the conflict

exists: hovering your mouse over the red

line produces a tool-tip box with an expla-

nation. In this example, Dreamweaver indi-

cates that the style div#dateline p over-

rides the font-size property of #story p.

You’ll also encounter that red line even

if there isn’t a style sheet conflict. Some CSS

properties aren’t inherited at all. In these

cases, you’ll see a red line through those

properties even if another style doesn’t

contradict them (see Figure 4). Margin,

padding, background, height, width, and

positioning properties aren’t inherited. And

this is a good thing; after all, if the height

property was inherited you’d have quite a

mess. For example, say you created a style

that set a div to 200 pixels high. If every ele-

ment inside that div inherited the div’s

height, you’d end up with 200-pixel tall

paragraphs, 200-pixel tall graphics, 200-

pixel tall headlines, and so on.

You can also use the Relevant CSS

Panel to figure out other styling problems.

For example, say you add a paragraph to

your page and see that the text is all blue.

Extension of
the Month

uilding a shopping cart system from scratch can take a

seasoned programmer months of hard work. But if you

use Dreamweaver to develop ColdFusion sites, you

can have a full-featured e-commerce solution up and

running for less than you’d pay a programmer for a few hours of

his time. Cartweaver 2.0 is a complete e-commerce solution for

ColdFusion, providing catalog, shopping cart, checkout, and

administrative functionality.

In less than an hour you can integrate e-commerce features

into your current site, or generate a complete store from scratch.

Cartweaver provides a lot of flexibility in how you display your

products, including support for multiple product options like

color, size, or any option that fits your products. You can even

include links to related products on a product page, a great way

to push traffic through your site and entice shoppers with other

products. You control the action – updating products, overseeing

orders, and managing customer information – through Web-

based administrative tools. You

can also track inventory and

allow back-ordering of out-of-

stock products. To complete

the sale, Cartweaver provides

support for several popular

payment gateways and proces-

sors: Authorize.Net, PayFlow

Pro, WorldPay Select Junior and

PayPal.

Developers will be pleased

to note that the licensing fee is

per developer, not per site. So

once you own Cartweaver you

can deploy as many e-com-

merce sites as you like. Even

better, Cartweaver’s ColdFusion

code is completely open and

very well commented – so developers who want to expand or

change the functionality of their e-commerce site can freely dive

into the code and program away.

If your ColdFusion site is aching for e-commerce functionali-

ty, Cartweaver 2.0 might just be the answer.

• • •

Have a favorite extension? Is there an extension you just couldn’t

live without? We’re always on the lookout for awesome exten-

sions, so drop us a line at: DaveMcFarland@sys-con.com

10 • 2004 MXDJ.COM • 17

You’re not sure why it’s happen-

ing, since you didn’t create a para-

graph style with the color blue. By

selecting each of the styles in the

list – i.e., each style that might be

passing on its properties to the

selection – you can locate which

style is dictating the color and

then edit that rule or create a new

style, with greater specificity, to

overrule the blue color.

Other Ways to Win
the Style Wars

There are some other ways to enforce a style even if there is a conflict. For example, say

you wanted to be able to create a class – let’s say .special – that will make all text it’s applied

to blue. As we saw above, just applying that class to an element won’t ensure you’ll get blue

text – another style like #content p might overrule it. And while creating a style with more

specificity like #content p.special will work, it won’t work for <p> tags with that class that

aren’t inside the #content div. Nor will it work for other tags, like headings or bulleted lists.

A quick solution is to invoke the CSS !important declaration. You can add !impor-

tant after any rule in a style to give it precedence over any other rules. Un-

fortunately, Dreamweaver doesn’t have a menu-driven way to do this; you just have to

open the style sheet in code view and add it by hand (tip: the quick way to open a style

sheet to a style is to double-click the style name in the Relevant CSS Styles panel or the reg-

ular old CSS Styles panel). For this example, you could edit the .special class style like this:

.special {

color: #0000CC !important;

}

Now you could apply this class to any element, and

even when other styles with greater specificity conflict

this style will win out. The Relevant CSS style panel also

recognizes the !important declaration. For example, in

Figure 5, even though the list of styles in the panel indi-

cate that #content p has greater specificity than .special,

the red line through the color property indicates that the

!important declaration wins out.

Summary
Inheritance, cascade, and specificity are all things

that make CSS an incredibly powerful tool – simplifying

style sheets by reducing the number of rules needed to

format your page. But as CSS becomes even more

important in how we format our pages – it’s not uncom-

mon to find sites utilizing multiple style sheets with

many rules – the number of confusing interactions between styles is bound to

increase. Fortunately, the Relevant CSS panel can help.

• • •

For more information on inheritance, the cascade, and specificity visit,

www.w3.org/TR/REC-CSS2/cascade.html

Dave McFarland is the Dreamweaver editor of MX Developer’s Journal and author

of Dreamweaver MX 2004: The Missing Manual. Find out about his latest projects

at www.sawmac.com. DaveMcFarland@sys-con.com

by dave mcfarland

Cartweaver 2.0
Extension Developer: Application Dynamics, Inc.

Developer Web Site: www.cartweaver.com

Price: $225.00

b

fi
g

u
re

 5

18 • MXDJ.COM 10 • 2004

erhaps you’ve heard of Flex,

maybe you’ve even dabbled

with Flash, or you have one or

more Flash developers on your

team. Nevertheless, you aren’t sure how

Flash and Flex fit together.

As an enterprise application develop-

er, I work on both the server side using

Java and the client side using Flash.

Knowing the benefits Flash has for the

client, I looked into Macromedia’s enter-

prise development offering, Flex. As a

Flash developer myself, I saw my Flash

skills being used differently on Flex-

based projects. I have now begun using

Flex because it fits in well with my own

skills, but more important, it fits with the

skills and needs of my team and our

enterprise development environment.

However, since I started introducing Flex

to colleagues, the same questions kept

popping up: “Do I need to learn Flash to

use Flex?”, “How does Flash work with

Flex?”, and “What does Flex offer that

Flash doesn’t?”

This article shows you, based on my

own experience, how Flash and Flex work

together and how the role of the Flash

developer changes when involved with a

Flex-oriented project.

Do I Need to Learn
Flash to Use Flex?

You don’t have to learn Flash to write

Flex applications. Flex applications are

turned into Flash movie files (the SWF

file) and sent to the end-user’s Flash play-

er; this means that you can think of Flex

as an alternative to using the Flash IDE

(Integrated Development Environment)

to make Flash movies. If you are an enter-

prise application developer and you’ve

tried to learn Flash but found the con-

cepts of the movie clip, multiple time-

lines, and levels a bit confusing, then Flex

will be much more to your liking.

How Does Flash Work
with Flex?

Flash developers play an important

role in developing high-quality, enter-

prise-level applications. It is important to

understand how Flash and Flex fit

together to appreciate how valuable a

Flash developer can be to your Flex team.

Before Flash 5 debuted, it wasn’t easy to

use Flash as the sole front end to your

Web application. Flash simply lacked the

necessary communication link between

itself and the server. When Flash 5

debuted it became possible to use Flash

as a front end for Web applications. Not

only could you create buttons to hyper-

link to Web pages, but you could now

request data from the server and modify

the user interface without generating a

new page. But to do this, you had to

learn the Flash development environ-

ment and think in movie-making terms.

This was great for the creative artist; Flash

became the way to show off yourself and

your company on the Web.

Tip: Flash had earned a reputation for

snazzy “intro” movies, electronic greeting

cards, and other, cartoonish uses. Even

though it is possible to build applications in

Flash 5, you have to build all of your own

user interface controls. This effort, along

with Flash’s flamboyant reputation, didn’t

help convince IT organizations to use Flash

instead of HTML.

Nonetheless, you probably discov-

ered that the Flash environment is not for

everyone. Just as not everyone’s brain is

wired to write software, not every pro-

flex

A New Role for Flash

Hurray! Flex is here, but you still need your Flash developers.

by peter ent

p

fi
g

u
re

 1

10 • 2004 MXDJ.COM • 19

grammer’s brain is wired to think in terms

of animation – a lot of us are old-fash-

ioned, procedural-driver programmers.

Flex, on the other hand, has been

clearly targeted at the enterprise Web

application developer. Flex offers the

advantages of Flash, but in a package

that fits with enterprise development.

Here’s how:

• Flex applications are created in a man-

ner similar to JSP-based applications

and require an application server to

run.

• The MXML files can easily be placed

into source code control (with changes

to them tracked – you can’t do that

with the binary Flash FLA files).

• MXML files can be edited by any text

editor.

• ActionScript, the language of both

Flash and Flex, is based on JavaScript,

which many Web developers already

know.

• Flex applications (that is, the MXML

and related files) are deployed to pro-

duction application servers as any JSP,

HTML, or image file is deployed.

• Flash offers market penetration with

98% of the world’s PCs running the

Flash player. Furthermore, Flash appli-

cations have a much smaller download

than Java applets or Java/Swing appli-

cations.

• Flash is priced for individuals and small

firms; Flex is priced for corporations.

What Does Flex Offer That
Flash Does Not?

Since Flex applications are ultimately

translated into SWF files executed by the

Flash player, you may ask “Can I build the

same application with Flash MX 2004 as I

can with Flex?” Both Flash MX 2004 and

Flex share a common look and feel. Both

Flex and Flash use the halo-themed com-

ponents. The on-screen objects, such as

buttons and lists, have a glow, or halo,

about them when you move the mouse

over them. Since Flex applications are

translated into Flash movies, you can log-

ically assume that what Flex delivers, you

can do in Flash MX 2004.

The short answer to the question

above is, “Yes, you can.” The long answer

is “Yes, but why would you want to?” Flex

contains more user interface components

than Flash MX 2004, and Flex contains

things enterprise developers are expect-

ed to provide in their applications. For

instance:

• Flex contains the objects to validate

phone numbers, email addresses,

numbers, and strings. Feedback is

automatically given to the user with-

out the developer having to write any

additional code.

• Layout managers provide the means

to resize and reposition elements and

happen transparently to the develop-

er.

In the enterprise development arena,

managers look at their return on invest-

ment, or ROI. If you had the choice to

build an application in Flash MX 2004,

but it took 3 months, versus an applica-

tion built with Flex that took 1 month,

which would you choose? Further, by

using Flex, most members of the team

could participate in the project, not just

the Flash developers.

So Why Do I Need Any
Flash Developers?

I have written several applications

with Flash that fall into this “enterprise”

category. I made extensive use of the UI

20 • MXDJ.COM 10 • 2004

controls provided by the MX 2004

Professional edition. Yet it was still a

handcrafted affair. I have since reworked

these applications in Flex with much suc-

cess.

Tip: Applications written for Flex not only

take less time to build and test, they are

easier to maintain.

But there is a catch. The original Flash

applications contained user interface ele-

ments that I could not create with Flex

alone. For example, one of the applica-

tions has a chart that the user can manip-

ulate. The user can drag the mouse over

the chart to zoom in. Flex does not come

with a component to do this.

To solve the problem, I put on my

Flash hat and created a component (see

Figure 1) that sits beneath the chart.

When the user moves the mouse over

the chart, a line follows the mouse until

he/she presses the mouse button. A yel-

low ribbon extends from the line and fol-

lows the mouse, giving the user a clear

indication of which part of the chart

he/she wants to zoom.

It was very easy to add my compo-

nent to the Flex project. But without any

Flash skills, this embellishment would not

have been possible. In this case it may

have killed the project altogether since

the feature is so valuable.

Tip: So what does a Flex team need with a

Flash developer? The Flash developer is

there, in a new role, to create more Flex

components! Flex comes with over 50 com-

ponents, but there is always something

more you need.

Figure 2 shows a clock component

added to a time-tracking application I cre-

ated in Flex. The clock shows the current

time and it sits under labels that are

defined in Flex. The Flash component fits

easily within the Flex layout of the page

and is treated like any other Flex MXML tag.

Rather than charging your Flash

developers with creating whole applica-

tions for your Web site, use them to aug-

ment Flex applications.

Conclusion
You do not need to learn Flash to use

Flex. The design and purpose of Flex is to

leverage the delivery and runtime capa-

bilities of Flash while fitting into the

enterprise development environment.

However, you cannot wholeheartedly

toss away your Flash development for

Flex. Flash plays too important a role. For

instance, the beauty that some artists

(and developers) achieve with Flash can-

not be duplicated in Flex. Flex does not

come with every user interface control

you will ever need; Flash provides the

tools necessary to create any type of con-

trol you can imagine.

Flash developers contribute to a Flex

team in the following ways:

• Develop new Flex user interface com-

ponents.

• Extend, or change, existing Flex com-

ponents.

• Assist page designers with the

ActionScript they need to make the

application work. For example, data

returned from a remote server call may

need to be transformed so it is easier

to deal with in the Flex application.

• Build new skins to change the overall

look of the components. Skinning, as it

is called, is the act of replacing the

look of an interface with a new one.

For instance, your company may have

decided that all of the buttons in an

application should be oval with a cop-

per sheen. You can achieve some of

this change using style sheets. But the

skin determines the shape of the but-

ton. A skilled Flash developer can

make new skins that fit within the

theme.

Advertising, marketing, gaming, and

Web site design firms have no need to

fear Flex. It is simply not the best solution

to deliver the types of highly artistic and

interactive solutions those firms produce.

If your business makes form-based appli-

cations, e-commerce applications, or

relies heavily on JSP, then Flex is right for

you. If you have been pushing Flash to

new limits, you’ll find those skills very

useful in Flex.

For the enterprise Web application

developer, Flash takes a new supporting

role on the stage where Flex is the star

player.

fi
g

u
re

 2

Peter Ent is a Web

application developer

specializing in Rich

Internet Applications.

He has more than 20

years of experience

ranging from key-

punches to wireless

PCs. peter.ent@keau-

ra.com

22 • MXDJ.COM 10 • 2004

T H E B E S T O F T W O W O R L D S

component-based

10 • 2004 MXDJ.COM • 23

hen I was asked, I jumped at the

chance to do a series on Flash

data integration for the MXDJ.

Here was a wonderful opportunity to share my popular talks,

presentations, and demonstrations with a large, interested

audience. In this series I have the opportunity to show you

how to use Flash MX 2004 Professional’s components to rap-

idly develop data-driven rich Internet applications. At the

conclusion of this series we will have constructed a one-page

shopping application capable of using data from several

back ends.

I’ve always loved Flash. I preordered a copy of it after see-

ing a demo at NAB/Multimedia World back in ’97. At the time,

the multimedia market was going into a “small correction”and

Macromedia was in the process of reinventing itself as a Web

company.

Macromedia had evolved a complete tool set for mul-

timedia. They had tools for the creation of interactive mul-

timedia, courseware, electronic graphics, audio editing, 3-

D, typography, and even video editing. In fact, that is what

I had dropped over to the Macromedia booth to see: their

new video editing product. One of the staff explained that

the technology had been sold and invited me to check

out Macromedia’s new acquisition: Flash.

Here was a tool that provided rapid visual develop-

ment of interactive multimedia and Web objects. This

theme of rapid visual development began with

Macromedia’s early products, Authorware and Director,

and is a hallmark of the Macromedia products line. Today

Flash, Dreamweaver, Breeze, and FlexBuilder all provide

developers with rich, powerful IDEs (integrated develop-

ment environments) to speed and ease development

tasks. Developers can choose to leverage the rapid devel-

opment offered by a graphical user interface or knock out

code by hand in an editor that provides automatic code

hinting, syntax checking, and extensive online references.

by art phillips

w

24 • MXDJ.COM 10 • 2004

Flash MX 2004 Professional offers the

best of both worlds. The data connection

components present the developer with

easy-to-use text inputs for connection

information. Menu-driven data binding

then allows for quick and easy connec-

tion to a variety of data sources and inter-

face components. These features,

accessed through the visual interface of

the component inspector panel, make it

possible to rapidly develop rich internet

applications. Properties and events

exposed by the components program-

matic interfaces allow developers to inte-

grate their custom programming with

the component framework.

Component-based development and

Web services were a key part of the

Macromedia MX product line. Jeremy

Allaire stated that Macromedia’s purpose

was to “ ...empower a wide range of

developers to access the power of object-

based component development, rich

client/server models and Web services

without the pain of complex frame-

works.”

I really like that part about “without

the pain of complex frameworks,” and

that is the focus of this series. In coming

months we will explore both rapid visual

application development and customiz-

ing applications with the easy addition of

a little hand coding.

To start the series off, this month we’ll

take a look at the history of client/server

communication and the evolution of the

RIA (rich Internet application). We’ll also

examine each of the data sources sup-

ported by Flash MX 2004 Professional’s

data components; XML, Web services,

and Flash Remoting (see Table 1 and

Figure 1).

In the early days of the Internet, Web

servers acted pretty much just like file

servers. They simply served up any pages

and images the client requested. They

had no way to interactively exchange

data from the client with data on the

server.

Along came the Common Gateway

Interface, or CGI as it is more commonly

known. CGI allowed the Web server to

hand off data from the client to other

processes, often a PERL interpreter. The

Gateway then allowed results from those

other processes to be passed back to the

client. It got the job done, but there were

performance and security issues in early

implementations.

CGI led to application servers and

server-side programming languages.

ColdFusion, PHP, JSP, ASP, and ASP.Net are

all examples of application servers and

server-side programming environments.

Application servers are designed to sit

between the client and the data and to

process programming directives embed-

ded in Web pages. Certain languages are

tied to specific servers. In all cases, all

programming directives are processed on

the server and replaced with standard

HTML before being returned to the client.

While this model of server-side pro-

gramming is very powerful, developers

encounter some important limitations in

the typical exchange of data between a

client and a Web server.

One key issue is the problem of the

page refresh and the Web’s stateless-

ness. In a typical exchange of data

between a Web client and the server,

the data is sent to the server as part of a

request for a page. This causes the page

in the browser to be replaced with the

new page and creates a multitude of

issues.

Since the Web is stateless and does

not keep a persistent connection

between the client and the server, how

do we identify a specific client? This con-

stant refreshing also raises another ques-

tion: How do we persist information in

the client? As developers we may want to

use the client to store user preferences,

shopping cart data, monitor progress

through a process, hold scores, etc.

Cookies, passing data in URL strings,

and other methods that suffer significant

limitations are routinely used to solve

these issues. A Flash-based RIA provides

simpler and more powerful solutions to

these problems.

Browsers present their own set of hur-

dles to both the designer and the devel-

oper. Different browsers on different plat-

forms make pages look and behave dif-

ferently. Tags do not render uniformly

across all clients and client-side scripting

(JavaScript) suffers from the conflicting

approaches taken by different browsers.

While Web browsers’ compliance with

standards has made great advances,

issues still remain.

The typical exchange of data

between the client and the server also

suffers from some key limitations. A typi-

cal exchange is limited to passing vari-

able declarations as name value pairs. All

of the rich complex data types develop-

ers manipulate in memory, queries,

XML Web Services
Pros Simple tag-based method of describing data. . Emerging standard for remote method calls and passing complex data.

Text files require no compilation or special servers Data exposed as a Web service may be consumed by non-Flash clients.

Cons Parsing complex data may be more confusing Requires implementation of data source as a Web service. Flexibility

due to lack of uniformity in data structures. between clients and servers is gained at the expense of efficiency.

Comments XML is a good data source if you already Web services are an attractive path if your enterprise is committing

have XML as part of your workflow. to web services.

fi
g

u
re

 1

10 • 2004 MXDJ.COM • 25

arrays, objects, arrays of objects, cannot

easily be passed between the client and

the server. Passing of complex data typi-

cally requires transforming the complex

data into a delimited string. This long,

awkward piece of text uses specific char-

acters as markers – delimiters – that sep-

arate the different pieces of data from

each other. This process of serializing the

complex data into a long piece of text

and deserializing the string back into a

complex data type has significant prob-

lems with both performance and the lack

of standardization to the process.

XML offers a standardized way of

describing complex data as strings and

facilitates data serializing and deserializ-

ing. However, the problems discussed

earlier, page refreshing, persisting data

and the lack of a uniform delivery target,

remain.

Here is where the Flash player comes

in. The Flash player is simply the most

incredible “thin client” available. It pro-

vides artists and programmers with

robust playback of interactive animation

and gives the client incredible abilities to

send and receive audio and video. All of

this is available from players that run on

desktops and in browsers, and are only a

fraction of a megabyte in size. In addition

to these rich media capabilities the Flash

player also provides a solution to some of

the most basic problems in Web applica-

tion development.

The Flash player deals with the

issues of statelessness and persistence

of data through two mechanisms. First,

the Flash client has a variety of ways it

can exchange data with the server

while the player continues to run within

its host. No new page has to be

returned every time we communicate

with the server. With a persistent mem-

ory space now established in the client,

maintaining the identity of a client and

persisting data during a client’s brows-

ing session becomes a simple and pain-

less task.

Between a client’s browsing sessions

data can be persisted through the use of

Flash’s client-side shared objects. These

local shared objects, or SOLs, are power-

ful “super-cookies” that offer unique ben-

efits to the developer. In addition to an

SOL’s ability to hold far more data than

the typical browser cookie, the SOL can

also easily store complex data types

including combinations of arrays and

objects without any need for the devel-

oper to manually serialize and deserialize

the data.

The Flash player also provides solu-

tions that allow developers to more easily

pass complex data between the client

and the server. The Flash player has built-

in capabilities for sending, receiving, and

manipulating XML. This native ability to

handle XML also provides for the imple-

mentation of SOAP, the Simple Object

Access Protocol. SOAP is a flavor of XML

used by Web services to exchange both

commands (such as method calls) and

complex data (such as queries) between

the client and the server.

Web services leverage Web proto-

cols to provide a standardized way to

communicate with a Web service’s pro-

grammatic interface. The use of stan-

dard Web protocols and the SOAP

schema provide Web services with great

flexibility. A client on any platform can

use a service on any platform. The flexi-

bility provided by this loosely coupled

architecture comes at a small cost in

performance.

Flash Remoting–enabled servers pro-

vide a more efficient, tightly coupled

connection to the Flash player. Flash

Remoting is similar to Web services in

that it has the ability to pass method

calls and complex data between the

client and the server. However, instead

of using XML/SOAP for client server

communication a more efficient binary

protocol is used, the Action Message

Fomat. AMF provides a much faster,

leaner, more efficient client server

exchange than the text based

XML/SOAP protocols.

Both the ColdFusion and JRun servers

from Macromedia have built-in support

for Flash Remoting. Macromedia also has

products to enable Flash Remoting on

J2EE and IIS servers. PHP has an open

source remoting solution and there are

open source solutions for other platforms

as well.

The Flash player’s rich presentation

layer and its support for advanced client

server communication make Flash a cor-

nerstone in the development of rich

Internet applications.

More than a marketing cliché, RIAs

are the natural evolution of the

client/server model. They “…combine the

functionality of desktop software applica-

Steps in
Component-based
Data Integration

1 Add a data connector (see Figure 3).

2 Provide connection information.

3 Add UI components.

4 Bind UI components to data and each other.

5 Trigger the data connector.

Flash Remoting
Most efficient technology for remote method calls and passing complex data between Flash and the server.

Requires a server supporting remoting. Data exposed via Flash Remoting requires Flash client.

Native support in ColdFusion and JRun make Flash Remoting an attractive option for developers

seeking the most efficient data integration in Flash.

ta
b

le
 I

Arthur Phillips has been

delivering cutting edge

training solutions since

1984 and has devel-

oped instructional

materials for George

Washington University,

the Federal Reserve

Board, the U.S.

Graduate School and

many others. Art has an

extensive background

in video, multimedia.

electronic graphics,

Web development, and

e-Learning. He holds

too many certifications

as a Macromedia

Instructor, Designer and

Developer to list. His

Web site (www.arts

website.com) is a well-

known nresource in the

Macromedia community.

art@artswebsite.com

tions with the broad reach and low-cost

deployment of Web applications – result-

ing in significantly more intuitive, respon-

sive, and effective user experiences.”

In other words, RIAs leverage the

global reach of the Internet while over-

coming some of the basic problems asso-

ciated with data exchange over the world

wide Web. This allows developers to cre-

ate a user experience that is much more

like using a piece of desktop software

than the typical Web application.

Let’s take a common Web experience

and compare what the user interaction is

like as a typical Web application and

what it is like as an RIA. Let’s examine the

user experience of shopping.

Shopping using a normal Web appli-

cation often starts with a search. The

search take shoppers to a new page

where the results of the search are dis-

played. The results provide shoppers with

some basic information (title, description,

price, etc.) that assists them in making a

decision (see Figure 2). They can either

go to another page to purchase an item

or another page to obtain more informa-

tion about an item. If shoppers choose to

purchase an item they are taken to

another page that shows their shopping

cart. When they choose to check out,

shoppers have to work their way through

yet another sequence of Web pages as

they provide their ordering and shipping

information.

Another page, another page, another

page… A simple purchase of two or

three items may force the user to navi-

gate literally dozens of Web pages.

Now let’s examine the same user

experience in a rich Internet application.

Shoppers begin their search and the

search results are displayed right on the

same screen with the search interface. As

users interact with the search results,

product details appear on the same

screen. When shoppers purchases some-

thing, their shopping cart appears on the

same screen that is serving as their cata-

log. Checkout is equally painless, occur-

ring, again, right on the same single

screen shoppers have been interacting

with throughout the process. This is

clearly a “significantly more intuitive,

responsive, and effective user experi-

ence."

If you have a Web application where a

user must go through many Web pages

to complete a process, you may have a

candidate for your first RIA. This series of

articles will help you make the transition

from typical Web application develop-

ment to RIA development.

The most important thing that I want

any reader to come away with is this: all

component-based data integration in

Flash follows a common development

model, regardless of the data source (see

sidebar).

Summary
This common development method-

ology will be demonstrated throughout

the upcoming articles.

In the next issue, XML will be our

data source of choice. We’ll examine how

XML provides a standard text-based

source of data for Flash applications. We

will bring XML into our applications and

build a master detail view. All of this will

be done with Flash’s visual tools; the

components, the component inspector

and behaviors. We will also see how to

hook in a little custom code to the visual

framework.

The third article in this series will

examine the role of ColdFusion as a data

source for Flash. Many other server tech-

nologies can serve as data providers

including Java, ASP, ASP.Net, and PHP.

However these other technologies do not

have the simple power of ColdFusion

Components (CFCs). CFCs provide for the

rapid development of both Web services

and Flash Remoting data sources. We’ll

examine the theory and put it into prac-

tice as we create the data source for the

next two articles.

Our fourth article will look at Web

services. We will examine how the

standard communication model

allows access to a wide range of

data provided by diverse back

ends, including Java, ASP, ASP.Net,

and PHP. We’ll discuss the technol-

ogy and implement a Web service

consumer in Flash.

The fifth article will examine

the technology and implementa-

tion of Flash Remoting, which is

closely tied to the MX product line.

In my sixth article we will

leave the visual framework and

add a shopping cart to our applica-

tion. At that point we will have a

very cool RIA – a shopping applica-

tion that runs within one Web

page, or from the desktop as an

application.

I hope you will join me as we

explore the world of component-

based rapid application develop-

ment in Flash MX 2004

Professional.

26 • MXDJ.COM 10 • 2004

fi
g

u
re

 2

28 • MXDJ.COM 10 • 2004

raphics created for games

published in Macromedia

Flash cannot be illustrated or

animated as usual. One must

understand that most games developed

in Flash can be processor-intensive, with

quite a bit of user interaction and several

animations playing at once, which means

your graphics and animations must be

optimized. Since most of these games are

served up over the Internet, by keeping

an optimized approach you will be able

to deliver a more streamlined gaming

experience. To streamline your game

graphics creation several concepts have

been developed, like formatting button

creation and color change, making the

production process more automated. We

will also be reviewing how preparing

your game graphics as many separate

game pieces plays an important role in

game creation.

Game Pieces
One game may contain hundreds of

individual graphics and animations and

once they are arranged together they can

seamlessly display a functional game. The

idea of separating many graphics as indi-

vidual game pieces is nothing new. In

fact in the video game console and PC

gaming industry it is very common to

separate game graphics as individual

pieces which are referred to as sprites.

For example, a character animation or an

item in the gaming environment is con-

sidered a sprite. We will not go into too

many gaming industry terms but it is

good to understand that most of these

techniques are nothing new, yet very crit-

ical to know if you wish to create profes-

sional games in Flash.

Hero Character
In most games there is a single char-

acter called the hero and the user con-

trols it to ultimate-

ly complete certain

goals. The user con-

trols the hero by

interacting with a

keyboard or con-

troller, which manipu-

lates the character to

walk forward, shoot

bad guys, or pick up

items. Understanding

that the hero has a set

number of things the user

can control it to do, you

will realize that the hero

sprite alone could be made

up of over half a dozen still

graphics and animations. For

the Game Techniques chapter

an army and alien-type char-

acters have been designed

along with an alien-looking

environment. A solid approach

to getting these graphics created

cannot all happen in Macromedia

Flash. It is recommended that

characters and all game graphics

are designed and sketched out on

paper first, as shown in Figure 9.1. There

they can be signed off by the client

before investing many hours illustrating

and animating them in Flash.

Where Macromedia Flash comes into

the picture is once you have scanned

your drawings and they are imported into

the program as raster graphics to be

traced with the Line tool or Brush tool. In

this case, the Brush tool was used to trace

the sketch, yet the strokes of black color

had to be optimized several times to the

final drawing you see in Figure 9.2. Since

this character graphic is quite small the

Zoom tool was used to zoom up close to

trace and zoom back out 100% to view

exactly what the user will see. This has to

be done since small intricate vector

graphics

appear clean and sharp up close

but can look aliased and a bit different in

shape if viewed at 100%. This is just one

of the quirks of working with fills in Flash.

Just remember, whatever you see at

100% is what the user will see, so that is

what matters.

Once the illustration is fully outlined,

colors are chosen with the Color Mixer

and the colors are applied with the Paint

Bucket tool, as shown in Figure 9.3.

Another rule of thumb is that with creat-

ing small graphics like this one linear and

radial gradients are not noticeable. Plus

the more gradient and alpha fills used,

the more processor-intensive your graph-

ic or animation can be to the gaming

experience, so solid fills will work just

fine.

book excerpt

Illustrating with Flash MX 2004
Game Techniques, from Chapter 9
by robert firebaugh

Charles River Media (www.charlesriver.com)

ISBN: 1584503157

Reprinted with permission of publisher

g

Due to space limita-

tions, not all of the

graphics referenced

in the chapter are

used here.

10 • 2004 MXDJ.COM • 29

Villain Character
The same approach was used to cre-

ate the villain character. A rough sketch

was drawn with pencil and paper, as

shown in Figure 9.4.

Then the drawing was scanned in and

imported into Flash where it was

traced with the Brush tool and opti-

mized to get a result as shown in

Figure 9.5.

Now that the character is fully

outlined, colors are chosen and

applied, as shown in Figure 9.6.

Buttons Made Easy
A game consists of many but-

tons for the user to select game

modes, load saved games, and

edit global options, just to

name a few. To create all these

buttons individually is a big

task, especially since each

button contains different

text and possibly a different

size. In this section we will

review a clever way to

make creating many dif-

ferent buttons of the

same type easy and

more efficient in file

size.

The basic concept

is that a button is

made up of three dis-

tinct parts, as shown

in Figure 9.7. The

three parts are the text, end piece,

and body. The end piece and body are

symbols so when they are used more

than once we save on file size.

The end piece is duplicated, flipped

horizontally, and moved to the opposite

side of the body of the button. The text is

placed in the center of the body and

changed to the appropriate color, as

shown in Figure 9.8.

The two end pieces are connected to

the ends of the body by using the

Selection tool with Snap to Objects fea-

ture on; that way the end pieces are

connected precisely, as shown in Figure

9.9.

Well, that takes care of one button,

but what about the others you have to

create? Using this first button as your

template when making the others, just

follow these two easy steps. Let us say

the next button you need to make has to

figure 9.1 figure 9.2 figure 9.3

figure 9.16

figure 9.4 figure 9.5
figure 9.6

30 • MXDJ.COM 10 • 2004

say “Character Selection.” First, change

the text from “Submit” to “Character

Selection.” If you are working with white

text on a white background feel free for

the time being to changing the color of

the text to black. Make sure when you

retype the text that it is justified left; that

way we will be scaling the button in one

direction, to the right. Now take the right

side end piece and move it to the right,

as shown in Figure 9.10. Use the Selection

tool to select it and use the right arrow

key on your keyboard while holding

down the Shift key to move it quickly to

the right.

With the body of the button selected

use the Free Transform tool to scale the

body to the right. Make sure the center

point of the Free Transform manipulator

is snapped to the left side of the body, as

shown in Figure 9.11. That way when you

scale the body to the right, only the right

side of the body will scale.

After following those two quick steps

you should have a similar result as shown

in Figure 9.12.

Color Change
The idea behind this technique is that

in a game there are characters or objects

that look similar but may be drawn in a

different color. For instance, you may

have four different colors of the same

monster. Another instance where this

technique is helpful is if you have a char-

acter that the user can change like the

color of their shirt. Instead of drawing ten

different-colored shirts, why not just

draw one that is a symbol and change its

color manually or with code. In our exam-

ple we have an alien and we need to

have four different color variations of it.

To break down the process on how this

graphic is prepared, we start with analyz-

ing the character. We want to look for

which parts of the character will be sepa-

rated and colored. For instance in Figure

9.13 we point out the first color symbol,

which we will set to the color of the char-

acter’s skin.

In Figure 9.14 we point out the sec-

ond color symbol which we will set to the

color of the character’s eyes, teeth, and

mouth.

Analyze the layer setup as shown in

Figure 9.15, which shows how the alien

symbol is architected, to better under-

stand the setup of how this color

change works. Notice at the bottom of

the symbol you have the COLOR skin

layer which sets the color the skin will

be. If you set the graphic on this layer to

blue the character will look blue. The

skin layer contains the different alpha

fills which define the light and dark

shades of the character. The COLOR eyes

and teeth layer contains the symbol

which sets the color the eyes and teeth

will be. On the eyes, teeth layer you

figure 9.18

Managing technology that runs your business is a matter of
trust and control. INTERMEDIA.NET gives you both.

TRUST. Since 1995 we have been providing outstanding
hosting service and technology to our clients. Don’t take our
word for it... take theirs.

“The support and service that you offer are nothing short of
golden. The high quality of your system and service for CF
customers is something one could only ever dream of.” –
Claude Raiola, Director, AustralianAccommodation.com Pty. Ltd.

CONTROL. We give you instant control over your site,
server and account configuration changes. No more
submitting requests and waiting for someone else to take
action. You are in control to pilot your business through
its daily needs.

BE THE PILOT. Take a free test flight and see what our
HostPilot™ Control Panel offers you beyond all others.
Check out our SLA guarantees. To see more testimonials
and to find out about our competitive advantages, visit
our Web site at www.Intermedia.NET.

WE DARE YOU TO TAKE A FREE TEST FLIGHT!

©
 C

op
yr

ig
ht

 I
N

TE
RM

ED
IA

.N
ET

, I
nc

 2
00

2.
 A

ll
rig

ht
s

re
se

rv
ed

. A
ll

ot
he

r t
ra

de
m

ar
ks

 a
re

 p
ro

pe
rty

 o
f t

he
ir

re
sp

ec
tiv

e
ho

ld
er

s.

Managed Hosting • Shared Hosting • Microsoft Exchange Hosting

Call us at: 1.800.379.7729 • Visit us at: WWW.INTERMEDIA.NET

be the
pilot!

FREE SETUP on Shared
Hosting Accounts With
ColdFusion MX Support

Use Promo Code CFDJ2004

32 • MXDJ.COM 10 • 2004

have the different alpha fills which define

the light and dark shades of the character.

The black lines layer contains the black

outlines of the character. These graphics

are not affected by any of the color

changes.

Another way to visualize the setup is

through a visual diagram of how the layers

and graphics are compiled, as shown in

Figure 9.16. For better understanding the

black outlines have been placed in the back

of this diagram. Notice how the alpha

graphics are placed on top of the colored

graphics. That way, when we change the

color of the colored graphics you still have

the alpha graphics defining the lightness

and darkness of the color. See how the

alpha skin layer has two different values of

alpha black fills, making the feelers of the

alien a darker shade of color than the tenta-

cles of the character.

By setting the Color Styles drop-down

menu to Advanced and manipulating the

color settings you can come up with many

different variations of the same character.

The Color Style drop-down box is located in

the Properties panel once the color symbol

is selected.

Background and Graphics
Background graphics have a great

impact in the final file size of your game,

because background graphics spread

across the whole display area. Most games

contain various levels where game play

takes place, which requires many different

kinds of background graphics. If the proper

techniques are not used your file size can

spiral out of control. Building your back-

grounds with many pieces of graphics that

are pieced together like a puzzle is the

most common technique used to keep a

file size down. To further understand how

optimized backgrounds are achieved ana-

lyze the finished background as shown in

Figure 9.18.

Build From Pieces
To create the rocky-looking ground

and make it repeat you have to create a

piece of graphic that when duplicated

and placed back-to-back the graphics

connect seamlessly. To start you will want

to draw a square with the Line tool and

draw in the texture with the Pencil tool.

For a quick trick to make sure the left side

will seamlessly flow into the right side,

draw the center of the texture first, then

finish the texture onto the left side and

Copy and Paste in Place, as shown in

Figure 9.19.

Change the color of the pasted lines

and move them over with the right arrow

key and connect it to the right side, as

shown in Figure 9.20. We changed the color

of these lines so when we decide to delete

them all we have to do is double-click on

them and only those lines will be selected

because they are a different color from the

rest.

Now finish the texture on the right and

make sure to connect the new line to the

lines we pasted from the left and we should

have something similar to Figure 9.21.

To color your texture just create a sim-

ple radial gradient and apply it with the

Paint Bucket tool. Make sure the gradients

on the left side of the texture will match up

with the textures on the right side. To make

sure they all match up use the same tech-

nique as used with the line drawing, but

apply it with gradient fills. You should have

a final colored graphic as shown in Figure

9.22.

To show how this texture tiles across

several pieces snap together several of

them, as shown in Figure 9.23. If you can

notice where they connect from viewing

the textures at 100%, go back and make

the minor adjustments needed.

To create the platforms and prepare

them so they can be scaled horizontally

without much distortion we will be using a

technique similar to what we used on the

buttons earlier in this chapter. The problem

is in a game many different-sized platforms

are needed and to create a new platform

for every size will increase your file size and

we do not want that. So the technique is to

create a center piece which can be scaled

horizontally and an end piece which is

duplicated and repositioned horizontally

based on the length of the platform, as

shown in Figure 9.24.

The end piece is duplicated and reposi-

tioned to the left, as shown in Figure 9.25.

Select the left end piece and flip it hori-

zontally by selecting the following menu

items: Modify > Transform > Flip Horizontal.

Then select each end with the Selection

tool and snap them to each end of the cen-

ter platform piece, as shown in Figure 9.26.

By scaling the center graphic horizon-

tally and repositioning the end pieces you

can create any size platform you desire. As

shown in Figure 9.27 many different sizes

are possible and since we are only using

two different symbols you can create many

platforms without increasing the file size

much.

Large Backgrounds
Creating large backgrounds can be a

puzzle just by itself since backgrounds can

be quite large and can increase your file

size tremendously. The number-one way to

achieve large backgrounds is to make key

elements symbols and reuse them. For

instance, with the horns that are sticking up

figure 9.19 figure 9.20 figure 9.21 figure 9.22 figure 9.23

figure 9.25 figure 9.26 figure 9.27

10 • 2004 MXDJ.COM • 33

from the ground, we just draw one horn

and duplicate it across the stage. A sim-

ple gradient is used in the background,

making it look like the characters are

inside a cave.

To create the horn graphic you should

start by using the Line tool to draw the

outline of the object, shown in Figure

9.28. Notice extra lines are drawn in the

center of the horn; these lines will divide

where the different gradient fills will be

placed to define the curvature of the

horn.

Create two radial gradients, both the

opposite of each other; one has the dark-

er color on the inside and the other has

the darker color on the outside. Apply

the radial gradients with the Paint Bucket

tool and position them as they are shown

in Figure 9.29 with the Fill Transform tool.

Figure 9.29 Two radial gradients are creat-

ed and applied.

To add a final touch to make the

graphic look a bit scary, you could add

some red light coming from the bottom

of the object. To do that, select the fills

we just finished coloring and copy and

paste them in place on a new layer above

the previous one we were just working

on. Select the new graphic and change

the color to an alpha red linear gradient.

That way we can see through it, as shown

in Figure 9.30.

A detailed description of this new lin-

ear gradient is as follows: the left color

swatch’s HEX value is #990000, alpha 75%

and the right color swatch’s HEX value is

#990000, alpha 0%, as shown in Figure

9.31.

Optimized Animations
Game animations require the most

attention when it comes to being opti-

mized. It is very important to keep the

number of different keyframes down to a

minimum and it is strongly recommend-

ed that every frame is optimized to make

sure the least amount of vector points

are used without losing the quality of

your graphic. The reason for the strict

optimization is that unlike normal anima-

tions, a game displays many animations

at the same time and even though you

may not see it, there is a lot of code work-

ing in the background. If too many un-

optimized animations are playing you

could jeopardize the performance of your

game and then bring down the quality of

the gaming experience. In this section we

will analyze a character animation and a

special effects animation to see how you

can make them as optimized as possible.

Character Animation
Character animations involve quite a

bit more frames than most game anima-

tions; therefore they require greater

attention. As shown in Figure 9.32, the

character is made up of many symbol

graphics which are -animated together

with motion tweens to display more

elaborate movement.

Of course, by reusing the different

body pieces many times because they

are symbols we save on file size, versus if

each frame of animation was a complete-

ly new graphic. As shown in Figure 9.33,

the key frames of the character shooting

require the body pieces to be used many

different times.

Special Effects
A special effect in a game is consid-

ered a short animation that highlights a

certain action or reaction. For instance,

when the character shoots his gun, two

special effects animations are needed,

one for the fire blast coming from the tip

of his gun and the flash to show the bul-

let hitting an object. Other special effects

animations could be a splash when

someone steps in a puddle, smoke from a

car stopping abruptly, a starburst from a

shining piece of metal, or a flash of light

from a lightning strike. Special effects can

be drawn as shown in Figure 9.34 or done

with ActionScript.

Summary
• Finalize your character drawings on

paper first to limit any character

design in Macromedia Flash.

• Build game graphics in pieces; reuse

and scale them to keep file size down.

• Setting up your character graphics to

include a layer of color that is changed

manually or with code to create many

different colors of the same character

will decrease file size and give you

more content.

• Limit the number of frame-by-frame

animations and use tween animations

to achieve greater motion with fewer

keyframes.

figure 9.33

figure 9.32

34 • MXDJ.COM 10 • 2004

Optimization, or getting your image

to the smallest possible size while retain-

ing an acceptable quality, is one of the

most important factors in determining

how quickly your Web page loads.

Note

The file types currently available for the

Web include the PNG format, but not all

browsers support this format, so you may

want to hold off on using that one just yet.

Getting Started
You can quickly optimize an image

using the Optimize panel in Fireworks or

you can optimize different parts of an

image using the Slice tool. Slices are need-

ed to export specific images or parts of

images in a document. A slice (or hotspot)

is also needed when you want to add a

behavior. One of the biggest advantages of

defining a slice is that you can individually

optimize each slice. This means that you

can have JPEG and GIF images in the same

document. You can also use different com-

pression settings for each image if desired.

Slicing Tools
The slicing tools are the Rectangle,

Circle, and Polygon Hotspot tools. The

Rectangle Slice tool works the same way

as the other Rectangle and Circle Hotspot

tools in Fireworks; click and drag over the

area you want to define. The Polygon

Slice

tool also works the

same way as the other Polygon tools in

Fireworks; click a starting point and click

to add points to define a shape.

You can define a polygonal shape

with the Polygon Slice tool, but the

polygonal shape cannot be exported as a

polygon shape. All slices are rectangular,

without exception. Fireworks automati-

cally adds as many rectangles as neces-

sary to maintain your defined polygon

shape. These rectangles fit together with

the polygon shape enclosed.

Every time you define a slice,

Fireworks automatically places red lines

areas
ns
ons,
on’t
lot
d
the
on a
kes
eds
each

10 • 2004 MXDJ.COM • 35

where additional slices could be to slice

the whole page. As you make additional

slices the red lines change. You could

stop slicing after a few slices and allow

Fireworks to use its own guides (the red

lines) to slice the rest of the image. In

the Exporting dialog box you see an

option called Include Areas Without

Slices, which slices your document

according to the areas defined within

the red lines.

Imagine you have a large 800K

image file and you want to get it under

100K. The image size is 600 x 400 pixels

and comprises several elements, includ-

ing a photo of a woman, a logo, text,

and a box shot. The photo has a lot of

color and is best optimized as a JPEG.

The text and logo have few colors and

should be optimized as a GIF. The best

way to optimize this large image is to

slice it into smaller images and optimize

each separately. By slicing the images

you can reduce the file size for individual

elements separately. Fireworks slicing

tool defines a specific area to optimize

(compress).

To slice an image, follow these steps:

1. Select the Slice tool from the Tools

panel.

2. Click and drag over an object or part

of an object/image.

3. While it is still selected, look in the

Property inspector (below the docu-

ment or press Ctrl/Option+F3). On the

left side is a field named Slice.

Remove the default name and give

your slice a meaningful name.

4. In the Type drop-down menu you can

choose whether the slice is for an

image or for HTML. The HTML option

allows you to type in text or even add

HTML code right in Fireworks. This will

render as HTML when exported, not

as an image.

5. You can add a link (URL), Alt text, and

a Target as well if you’d like.

6. Below the Type field is a menu of pre-

set optimization settings you can use

(see Figure 1).

Optimizing GIF Images
Images (such as logos, text, or draw-

ings) with large areas of color and/or

images with 256 or less colors are best

suited to the GIF format (see Figure 2).

Any image that you want to have a

transparent background will need to be

exported as a GIF. Photographs should

always be in JPEG format. To optimize

an image as a GIF, follow these steps:

1. File > Open the image you want to

optimize.

2. Select the image either by clicking on

it or, from the Edit menu, choose

"Select All".

3. Click on the Preview, 2-Up, or 4-Up

tab to preview your settings as they

will be seen in a browser. Previewing

how your optimized image will look in

a browser is vital, and Fireworks

makes it easy. The Preview tabs are on

the top left of your document win-

dow. You can view one setting or up

to four different optimization settings,

including different file formats. You

can see the changes each setting will

make on the file size and the appear-

ance of the image.

4. Open the Optimize panel by clicking

on the word Optimize in the Panel

group area. If the Optimize panel isn’t

open you can press F6 to activate it.

5. Select GIF from the File Format drop-

down menu.

6. Select the Indexed palette you’d like

to use. Your choice determines which

of the 256 colors are included. The

most used palettes are:

– WebSnap Adaptive palette is the

default palette for indexed color in

Fireworks. Any color that is not

Web safe is automatically evaluat-

ed and snapped to the closed

Web-safe color, plus or minus

seven values. It doesn’t guarantee

that all the colors will be Web safe

but it’s close.

– Adaptive palette finds a maximum

of 256 colors. It’s not a preset color

set, but the best 256 colors for

your image. This technique may

contain a mixture of Web-safe and

non–Web-safe colors.

– Web 216 converts all colors in the

image to the nearest Web-safe

color.

7. If there are specific colors that you

don’t want removed, select them

from the Color table then click on

the Lock icon at the bottom of the

Optimize panel.

8. Select a Matte color or the transpar-

ent option. The Matte option

enables you to export your image

Joyce J. Evans is a training veteran with over 10

years of experience in educational teaching,

tutuorial development, and Web design. She

has presented at conferences such as

Macromedia MAX 2003 and TODCON. Joyce

has authored books including Macromedia

Studio MX 2004 Bible, Dreamweaver MX

2004 Complete Course, and others. Joyce is a

Team Macromedia volunteer and her work is

also featured in the Macromedia

Design/Developer center. Her Web site is

www.JoyceJEvans.com.

joyce@joyceevans.com

slice as though it has a background

color – without changing the canvas

background color. This option is par-

ticularly important when you want to

use the exported image in an envi-

ronment different from the one it

was designed in, or when you are

planning to use the image on a vari-

ety of different-colored backgrounds.

9. Select the number of colors you’d like

to use. Check your preview to see

how it looks. Zoom in a bit, especial-

ly when you have anti-aliased or

feathered edges. As you lower the

colors an anti-alias and feathered

edge will get more jagged. You’ll

need to decide at what point the

colors are acceptable to you.

10. Set the Loss setting if you’d like. Loss

is the amount of compression used.

GIF images normally have no loss of

image detail as long as the image

has less than 256 colors and/or you

don’t remove colors because they

use loss-less compression. But you

do have the option of using com-

pression even in a GIF image; it pro-

duces some distortions in your

image however. The higher the loss

setting, the higher the distortion.

11. Set the Dithering option if you’d like.

Dithering gives the illusion of new col-

ors by varying the pattern of dots of

color. The downside is that it increases

the number of color changes in a hori-

zontal row, which also increases the

file size. You apply any percentage of

dither you feel is needed to help a GIF

image look better.

12. Set the transparency. The choices for

transparency are No Transparency,

Index Transparency and Alpha

Transparency. Index Transparency

will remove the background color,

even if it is in the image itself. Alpha

Transparency will remove the back-

ground color only and not the same

color if it appears in your image.

Note

Only one color can be used for the

matte or background color automatically.

You can, however, add or subtract addi-

tional colors to the index or alpha trans-

parency by using the various eyedroppers

in the lower-left corner of the Optimize

panel. Click the appropriate eyedropper;

then click the color. You’ll need to reselect

the eyedropper each time you want to

add or remove a color to the transparency.

Optimizing JPEG Images
Photos and images with gradients are

best optimized as JPEGs (see Figure 3).

Selective JPEG compression is a special

feature available only for JPEG images. It’s

used to set higher optimization to select-

ed areas of an image. To optimize an

image as JPEG, follow these steps:

1. Select the image or slice.

2. In the Optimize panel, select a File

Format of JPEG.

3. Open either Preview, 2-Up or 4-Up to

see how your settings will appear in a

browser.

4. Change the Quality setting. Experiment

with different levels and check the

quality of the image in the preview. The

quality setting determines how much

compression is applied to the image.

It’s a good idea to zoom in a bit to see

the artifact effect on your image. Go as

low as you can and still have an accept-

able-looking image.

5. Add Smoothing if you’d like. When you

lower the quality setting you may see

visible artifacts depending on how low

you went. The Smooth option adds a

bit of blur to blend the image. You lose

some image sharpness but it may be a

compromise you are willing to make

when a small file size is a must. The

Smooth setting ranges from 0 to 8 with

8 being a higher degree of blur.

6. Another option that you don’t see in

the Optimize panel is to sharpen the

JPEG edges. If you optimized pretty

low and/or used Smoothing, you may

need to sharpen the edges a bit. To use

this option, open the Optimize Options

Pop-up menu and select Sharpen JPEG

edges. This will add to your file size.

That's all for now. Next month, I'll

show you how to batch process all those

images!

36 • MXDJ.COM 10 • 2004

fi
g

u
re

 3

fi
g

u
re

 2

fi
g

u
re

 1

38 • MXDJ.COM 10 • 2004

10 • 2004 MXDJ.COM • 39

A
picture is worth a thou-

sand words, but there’s

always some loud-

mouth who wants to

add a thousand words

to your picture. For that, you have to

know a little more about FreeHand’s text-

handling methods.

We pretty much handled headline

text in last month’s article (Vol. 2, issue 9),

so this month the emphasis will be on

body text – or body copy as some of us

old-timers call it. Your boss probably calls

it the “small print.”

I assume that you’ve read last month’s

article. In it, you’ll learn about the con-

struction and operation of text blocks

and the basic job of entering text on a

FreeHand page.

The “ABC” Tab
There’s something about an “R-ball” –

registered trademark symbol, “TM” sym-

bol, and other legal marks that I don’t

like, so I make them smaller and use

Baseline Shift to move the marks to align

with the top of the text.

To stylize paragraphs, most of the

work is done in the Object panel (see

Figure 1). The Paragraph button has

been selected, opening the options we

can apply to paragraphs. The first of the

five spaces is a text entry for the space

above a paragraph. It’s common for

novices to place a double return

between paragraphs, but if you really

want control over your typography, enter

a value here.

If you just enter numbers without

checking the units of measure you have

set for your document, you could be sur-

prised to see your text disappear. For

instance, if you want two points of space

before a paragraph and enter “2” in the

top field – but the document is set in

inches – you’ll get a two-inch gap

between paragraphs.

Next in paragraph stylization is the

space after a paragraph. If you also have

space before measurements, the effect is

cumulative. Entries can be made for left

and right indents (shown in Figure 2), and

at the bottom of the row is the spot to

create a first-line indent. Beneath those

text fields, you see the Hyphenate option.

Place a check in it and your text will

hyphenate automatically; delete the

check and words won’t break. The Edit

button allows you to input how much of

the last line must be filled with text

before it justifies (the Flush Zone).

Hanging punctuation and rules were cov-

ered last month.

Notice the size of the text block in

Figure 2 and compare it to the size of the

text block and indents in Figure 3. In

Figure 2 the text has been selected with

the Text tool, which brings up the Text

section of the Object panel. The text is

indented from the margin or boundary of

the text block when using paragraph

indents. In Figure 3 the top text block has

been selected with the Pointer tool,

bringing up the “Clip Text Block” entry in

the Object panel. Here, the text block

itself is indented when using indents

based on the text block, as you can see in

the bottom text block with the text itself

selected. For the more curious among

you, it’s called a Clip Text Block because I

used Paste Inside for the dashed lines,

creating a clipping path in the process.

The point of the text block is that you

can apply a color to a text block, then

inset the text from the sides – similar to

adding padding to a cell in Dreamweaver.

In doing so, you can move the text block

around the page, reshape it, edit the text,

and still maintain a single object on the

page. The Object panel displays the

dimensions of the text block and its loca-

tion on the page, and gives you fields to

enter the inset on all four sides.

There are often times when you will

have a paragraph of text and the last line

doesn’t seem to obey the leading set-

tings you’ve applied. When you see this –

it’s usually too much space – just place

the Text tool cursor at the end of the line

and press Enter or Return. This gives you

an extra blank line beneath the para-

graph, but brings the last line of text into

proper leading. If you need to get rid of

that extra blank line, usually you can use

the keyboard arrow key to drop down to

the beginning of the next live line of text,

then press Delete or Backspace to elimi-

nate the blank line. This behavior is com-

mon to page layout programs as well.

Text on a Path
Sometimes it’s not enough to get

words on a page into nice straight lines,

squared off paragraphs, and easy to read.

No, sometimes you want to have text

slither around the page or circle a logo. In

FreeHand, it couldn’t be easier. Start by

creating your text; set the size fairly close

to your desired result. Then draw your

path. For an open path (top of Figure 4),

all you have to do is Shift-select the text

and the path and choose Attach to Path

from the Text menu. As long as the text

stays “live,” you can edit it any way you

want – size, font, style, spelling – it’s all

available for you.

The really scary part about placing

text on a path is that it becomes ugly in a

really bad way on a Mac! It’s a problem

between OS X and FreeHand, but evi-

dently the text becomes aliased and

doesn’t happen on Windows machines.

It’s nothing to worry about, however, it

prints fine. If it offends you – and you

know you don’t have to edit the text –

you can convert the text to paths to get

clean text. Figure 4 shows the aliased

text, followed by the text converted to

paths.

Just below the text on a path, you

see a rather crude snake shape. It was

converted to a brush and applied to a

clone of the original path. The text was

placed above the snake brush and a

clone of the text was changed to white

and offset.

Figure 5 shows what to do if you want

your text to follow multiple paths. In this

case, the snake path was cut in two and

the text was applied to one of the paths.

An overflow box appeared at the end of

the text and was simply dragged (with

the Pointer tool) onto the second path.

Text on an Ellipse
Applying text to an ellipse is a daunt-

ing task at first. But it’s really not that

much of a mystery. It comes down to a

couple things: 1, you have a circle, and

the circle has a top and a bottom; 2, you

must place a Return between the text

you want on top and the text that goes

on the bottom. That’s it. Whatever goes

before the carriage return will appear

upright on the top of the circle, and

everything after the return will be

upright on the bottom. If you want the

text to completely encircle an object, just

don’t put a return in the text.

You’ll notice that somewhere along

the text on a path there’s a little triangle.

That triangle allows you to move the text

along the path. Just click and hold it with

the Pointer tool and drag until you like

what you see.

In Figure 6, text has been applied to a

circle, and as you can see in #2, the text

became aliased, so was converted to

paths in #3 for the purpose of the

screenshots here. The red dart in #2 is

pointing at the text’s alignment triangle.

Number 4 added two more circles, and

the entire group was distorted using the

3D Rotation tool, applying a bit of per-

spective to the drawing. For the final

drawing in #5, a clone of the ellipse was

dragged down a bit, and a second clone

of the top ellipse was punched out of it.

A gradient fill here and there finished it

off.

How Do I Get Text OFF a
Path?

It’s too easy. Select the text/path, and

choose Text > Detach from Path. The

original path and original text will both

be intact.

Text Inside a Path
We have the same basic principles at

work when we want to place body copy

inside a path. Copy the text to the

Clipboard and select the closed path you

want to fill with text. Go to Text > Flow

Inside Path and the text will appear. To

make the text continue to another closed

path, click and drag the text overflow

icon into the new object, just as you

would to continue to another path. This

isn’t to say that everything will work out

fine – as you can see in Figure 7, the text

fits pretty well, but no one is expected to

attempt to read it! Leading and let-

terspacing must be adjusted to get a

good fit, and adjustments were made to

inset the text block. The large letter

shapes were cloned for the extrusion,

and the originals were used for the text

flow. Text can flow into any closed path, I

happened to choose letter forms for this

example. To remove the text from the

inside of the path, select the text with the

Pointer tool and go to Text > Detach from

Path. The text will appear in a block

above the closed path.

Text Around an Object
Typesetting is all about readability.

That said, ignore the example in Figure 7!

Instead, let’s look at running text around

an object. The rules are pretty simple –

you can’t run text around a group or a

blend. Figure 8 shows text running

40 • MXDJ.COM 10 • 2004

fi
g

u
re

 1
fi

g
u

re
 2

fi
g

u
re

 3

around the “MX” shape. In order to create

this effect, place the object(s) above the

text (use Modify > Arrange > Bring to

Front). Then Shift-select the block of text

and choose Text > Flow Around

Selection. A dialog box opens and you

can choose to flow text around an object

by clicking the option shown in the fig-

ure, or flow over the object by clicking

the button on the left. The Standoff area

allows you to enter an amount you wish

to have as “white space” around the

object. The numbers certainly don’t have

to be symmetrical, and feel free to add as

much as you need to keep text from

flowing where you don’t want it to flow.

After you’ve entered your numbers (and

you can leave them set to zero if you

already have enough clearance on your

shape), click the OK button and the text

will reflow. If you move the object

around, text will reflow again – nothing is

cast in stone.

Groups and blends don’t mean you

can’t cheat, though! Go ahead and make

your group or blend, then create anoth-

er shape directly above that object, and

use that object for the runaround. If it’s a

complex shape, use the Pen tool to

make the shape for your white space.

When it’s complete, give it a fill and

stroke of none, and use it as the text

runaround. At that time, you can group

the ghost shape and your original

object, and FreeHand doesn’t seem to

care. I have noticed, however, that mov-

ing that combination off the text leaves

the text indented as if the objects were

still there. A simple resize of the text

block seems to fix the problem.

Run Me a Tab, Billy!
One of the greatest text attributes

FreeHand has going for it is the way it

handles tabs. For the most part, you can

create some pretty decent tables, either

by importing data from a spreadsheet

or word processing program, or by

entering information directly. Word pro-

cessing files must be RTF (Rich Text

Format) files, and you can save an Excel

spreadsheet as Text (Tab Delimited). You

can also copy a table from FreeHand

and insert it directly into an Excel docu-

ment.

Tabs are pretty straightforward, just

remember to select all the text in the

table with the text tool first. It’s easiest

to click anywhere in the table and then

choose Edit > Select All. To be honest,

you don’t have to have all of the first or

last lines of text selected – a portion

will do – but it’s good practice to select

all the text. Then it’s a matter of drag-

ging a tab from the Text Ruler to its

proper position in the table. You don’t

have to be precise when you’re first set-

ting the table up, and if you have a

tough time getting the tab exactly

where you want it, just double-click the

tab and a small dialog box opens that

allows you to enter an exact location,

leader, and tab alignment, as seen in

Figure 9.

Tabs are placed by dragging them to

their position in the space directly above

the ruler scale. To remove a tab, simply

drag it out of that space and release the

mouse. To apply a leader, click on the

leader drop-down menu and choose

from dot, dash, or underscore. The

leader will go to the tab immediately to

the left of the one you selected.

The best feature about FreeHand’s

tabs is the wrapping tab. Figure 10 has

the cursor pointing to the wrapping tab –

its icon is a two-headed, downward-

pointing arrow. When you use this tab,

text is always aligned to the left, and

ragged right. Figure 9 has a wrapping tab

in the first column, so there’s only one

wrapping tab marking the right limit of

the text that wraps from one line to

another. In Figure 10, the wrapping col-

umn is in the middle, so it requires a

wrapping tab on either side of the col-

umn, plus a center tab for the header

row. Normally, you don’t mix tabs of dif-

fering types on separate lines like this,

but with the wrapping tab it’s okay. Both

of the tables are set up with a text block

indent and a border; the colored bars

have been cut and pasted inside the text

block.

42 • MXDJ.COM 10 • 2004

fi
g

u
re

 4
fi

g
u

re
 5

10 • 2004 MXDJ.COM • 43

Importing Text from Other
Programs

If you need to import a file from

Adobe Illustrator or Adobe Acrobat, I

don’t envy you. I don’t get predictable

results from the Windows or Mac side.

The best I can do is copy the file to the

Clipboard from its native program and

paste it into FreeHand. But that’s only half

the battle. Figure 11 shows what hap-

pens to a single line of text copied and

pasted from an Illustrator document.

Single words are broken into charac-

ters, seemingly without rhyme or reason.

Your only recourse is to select each block

of text and copy/paste it into a fresh text

block. Tabs cease to exist completely.

Frankly, it’s much easier to paste the

text into Microsoft Word and re-

export it. If you’re exporting a

FreeHand file to Illustrator, be

warned that the programs

treat text differently, and line

breaks will change. You may lose

text in truncated text blocks, and life

will be miserable to say the least.

Whenever I’m called on to create an

Illustrator version of a FreeHand

document, I convert all the text to

paths first. If the recipient needs to

work in the text, then you’re better

off doing the job in that other pro-

gram (ugh!) in the first place.

Vertical Text
When clients ask for vertical text, they

usually get an earful from me about how

difficult it is to read. I guess it’s because

not every letter is symmetrical, and the

“color” of the text becomes spotty – even

when the text is centered. But since they

write the checks, I give them what they

want. Figure 12 shows how to create ver-

tical text without hitting a carriage return

after each character.

Set the text you want in the normal

fashion in a fixed-size text block with cen-

tered alignment. Then drag the right-bot-

fi
g

u
re

 7

fi
g

u
re

 8

fi
g

u
re

 6

tom corner point/handle of the text block

to a vertical position just a bit wider than

the widest letter. Double-click the bot-

tom-center control handle to make the

text auto-expand vertically. If the letters

are too close together or too far apart,

double-click the bottom control handle

again, and drag the text block from that

point up or down to adjust leading.

Textual Issues
Apple’s operating system improves

every couple months or so, and when it

does, sometimes it doesn’t play nicely

with FreeHand and other programs. It

seems to be especially grouchy when it

comes to fonts. It’s a known issue that

certain fonts – Helvetica Condensed for

one – will appear fine on screen, but

when the file is sent to the printer, some

characters are replaced. The most notori-

ous is the bullet character being replaced

by the Yen symbol. What’s most troubling

about this is that it happens only some-

times. I’ve taken to converting my bullet-

ed text to paths, or simply creating my

own bullet shape and pasting the graph-

ic into the text as an inline graphic.

The Odd Text Tip or Two
• You can switch from auto-expanding

to fixed-size text blocks in the Object

panel when the text block is selected

with the Pointer tool. Just toggle the

buttons to the right of the numerical

fields “w” and “h” shown in Figure 3.

• You can place any graphic object in a

line of text by simply copying it and

placing the text cursor in the text.

Choose Edit > Paste, and the graphic

element will flow with the text. Use

Baseline Shift and Kerning as necessary.

• A text block can be duplicated by

pressing the Option/Alt key while

dragging the text block.

• You can force text in one block of

linked text to flow into the next block

in the link by going to Text > Special

Characters > End of Column.

• The Preferences panel allows you to

always use the Text Editor, have new

text containers auto-expand by

default, display a font preview in the

fonts menu, and show a vertical line as

you’re dragging a tab.

• FreeHand really hates less-than-perfect

fonts and they will cause the program

to crash. If you’re

experiencing

crashes in certain

documents, it’s more than likely that

you have a corrupt font in the docu-

ment. With Apple’s OS changes, some

fonts were nixed, and older FreeHand

documents could have the “bad” fonts

in them, creating nasty crashes. The

solution is to use a font utility to fix or

find and delete the bad fonts.

• Watch it when you add a stroke to text.

Sometimes FreeHand will place a really

squirrelly path around some letters or

lines and apply a normal path around

others. It looks as if you’ve added a

stroke with a Sketch effect – definitely

not anything you can use. This effect

happens both with live text and text

that has been converted to paths.

When this happens, break the text

down to its lowest components – indi-

vidual characters if necessary – and

reapply the stroke. Sometimes, choos-

ing one line of text at a time is all that’s

necessary.

Illustrator, designer, author, and Team

Macromedia volunteer, Ron Rockwell

lives and works with his wife, Yvonne, in

the Pocono Mountains of Pennsylvania.

He is the author of FreeHand 10 f/x &

Design, and coauthored the Studio MX

Bible. Ron has just introduced a “Casual

FreeHand” course available at

www.brainstormer.org. Many thanks to

John Nosal, Peter Moody, Bob Sander-

Cederlof, and other engineers at

Macromedia for the technical editing and

support they provide.

guru@brainstormer.ord

10 • 2004

fi
g

u
re

 9

fi
g

u
re

 1
0

fi
g

u
re

 1
2

figure 10

44 • MXDJ.COM

actionscript
by john blandA Little OOP, CF Style

46 • MXDJ.COM 10 • 2004

love building applications, and I’ve built some pretty good Flash and

Central applications, if I may say so myself, but I never grasped the con-

cept of building similar applications in ColdFusion (CF). By similar I am

referring to how with ActionScript I can import a class and create an

object containing properties, methods, and most likely some form of

data. All of the CF applications I built were really just pages with queries

at the top of the page, inside the Application.cfm, and finally I began to

utilize Coldfusion Components (CFCs). I then realized I could store a ref-

erence to a CFC inside a scope, like Session or Application, and reference

that CFC just like I do an object in AS. We’re going to mimic this concept,

creating an object and storing data in it, by building a photo album

application.

The Directory Structure
Let’s start by setting up our directory structure. I tend to go with a

certain structure for all projects, including Flash. Figure 1 shows my

default directory structure. The top level is assets and all assets are

inside: cfcs, css, images, and pics. If I utilized any Flash in this app, which I

almost did, you would see assets/flash as well. The folders are pretty

much self-explanatory except for the pics folder. The pics folder will con-

tain more folders containing jpegs (e.g., assets/pics/Football 1998

/Touchdown 400032.jpg). We’ll revisit this later. It’s time to start creating

some files.

The Application.cfm
I think of the Application.cfm file as a header file. By header I mean it

runs before all ColdFusion Templates (CFM) in the same folder or in sub-

folders where an Application.cfm file does not exist. So, you could utilize

it for placing a header on top of all of your pages for consistency or to

process data. The inverse to Application.cfm is OnRequestEnd.cfm or

footer file. OnRequestEnd.cfm runs after CFMs have processed just as

Application.cfm runs before they process. This can be used for a simple

footer to display at the bottom of every page or to process data.

action

10 • 2004 MXDJ.COM • 47

For this, we’re going to process data

in our Application.cfm and not utilize the

OnRequestEnd.cfm. Let’s peruse our

Application.cfm block by block.

Listing 1 utilizes the <cfapplication...>

tag. The tag defines scope access, time-

outs, and more. We enabled Session man-

agement and set our Session timeout to

one hour and our Application timeout to

one day by utilizing CreateTimeSpan

(days, hours, minutes, seconds). The <cfsi-

lent> suppresses any output therefore

maintaining our white space. For devel-

opment purposes, you may want to

remove <cfsilent...> so you can view

<cfdumps...>. The end tag is at the bot-

tom of the file.

Whenever I utilize scope variables I

always set up a way to destroy them.

Being a former quarterback kind of

explains my URL variable blue42;

although the professionalism isn’t there

the average Joe won’t guess it and

repeatedly destroy my scope variables

out of boredom (this isn’t my normal vari-

able name either). Whenever I append

?blue42 to my URL Listing 2 runs like a

4’8” rookie halfback trying to make the

team. Many will argue using StructClear

in the way I do isn’t good but (singing)

“It’s my app and I can code how I wanna!”.

StructClear(struct) clears the structure

inside the parentheses. This enables you

to clear all variables stored in the Session

and Application scope. If you don’t want

to clear the entire Session or Application

scope you can utilize StructDelete(struct,

key).

Listing 3 sets our parameters. The

Application.title is what shows up in the

title bar of your browser (see Figure 2). The

other three parameters are for code pur-

poses only. Application.path is the path to

our images. If we wanted to duplicate this

application and use it on another estab-

lished site, all we would do is change the

path to the images and let it roll.

This is where we get to some good

stuff. In Listing 4, <cfif...> checks to see if

the data_cfc variable already exists in the

Application scope. If the variable is not

defined we step into the <cfif...> block,

create an object using CreateObject(),

and store a reference to the CFC in the

Application.data_cfc. CreateObject() can

be utilized for different types but for this

app we are using it for a CFC. The first

parameter is the object type while the

second is the location and name of the

component using dot syntax (slashes are

replaced with dots and no file extension

is referenced). By referencing our directo-

ry structure you see the data.cfc file will

reside in assets/cfcs which results in

assets.cfcs.data, in dot syntax. Keep in

mind things change in CreateObject() if

you are using another type. After we

instantiate, or create, the CFC object we

can setup our albums by calling the

setupAlbums function.

I thought of going another route here

by saying the albums are set up by call-

ing the setupAlbums() function and then

showing the data.cfc file later; but I think

you will benefit more if we take a break

from the Application.cfm and move to

the data.cfc file. skip ahead to finish the

Application.cfm file if you’d like, then

return to the next section to sum it up for

you.

The Workhorse
data.cfc is where the data is retrieved.

The beauty of this app is we could always

change our data retrieval method and

the app will operate the same. Of course,

the data structure must match. I’ll

expound on this in my closing.

Listing 5 is the skeleton data.cfc struc-

ture, variable declaration, and a <cftry...>

block. Okay, the variables make it a little

bit more than just a skeleton but flesh is

cool too. Let’s review a brief rundown of

the current data.cfc. <cfcomponent...>

creates the CFC. The three <cfset...> tags

setup custom CFC variables, or proper-

ties, by appending this. (the word this

and a period) before the variable name.

this.albums is set to an empty string just

for the meantime.

<cffunction...> defines a function

block. We utilized the parameters name

and access. name is the function name, in

this case setupAlbums. access is public so

we can access the function from any-

where within the present app. The next

two lines of code set up local variables.

Local variables are specific to the current

“scope” which is the setupAlbums func-

tion in this case. Once the function is fin-

ished processing the variables are

removed from memory. Local variables,

in a CF function, are required at the top

of the function block but below any

<cfargument...> tags. These variables will

come into play soon.

Listing 6 shows the entire

setupAlbums function. We’ve covered the

first few lines of code so no need for

review. With every <cftry> tag there is a

requirement for a <cfcatch...> tag as the

last tag of the code snippet below:

<cftry>

<!--- Code to try -->

<cfcatch type=”any”>

<!--- Catch code goes here -->

</cfcatch>

<!--- Nothing should go here -->

</cftry>

<cftry> will process the code inside

the <cftry> (and above the <cfcatch...>).

If an error is caught the code inside

<cfcatch...> will process. For our sake we

set the type parameter of <cfcatch...> to

any so any error the code encounters will

process the <cfcatch...> code. Now we

have our fail-safe in place and any time

we encounter an error in our code, within

the <cftry..> that is, the visitor will get a

custom message by utilizing the

<cfthrow...> tag inside the <cfcatch...>

block. It’s not much of an error message

but that’s not our focus here.

The code we are trying does two

things. The <cfdirectory...> tag lists the

directory structure of our assets/pics fold-

er, retrieved from the Application.path

variable, and stores the query in the

this.albums variable. By storing the query

results in this.albums the albums query

may be accessed by calling the

Application.data_cfc.albums. In essence

the subfolders in assets/pics is the current

query of what we will call albums, hence

the variable name (see Figure 3). The

front end (visual representation of the

data) will be able to access this data and

allow visitors to switch between albums,

or you can think of it as changing folders.

We can’t stop here though. This wouldn’t

be much of an application if it simply list-

10 • 2004

fi
g

u
re

 1

figure 2

48 • MXDJ.COM

ed a few albums. We need images.

There are many ways to approach this

application from this point but I chose to

store the images query in the albums

query to prevent extraneous looping by

the front-end. Instead of looping through

the images and using a <cfif...> tag to fil-

ter the images for a certain album simply

store the images query inside the albums

query (on the same row as the parent

folder). We’ll get into the display of these

later but, trust me, this will definitely

improve front-end performance by not

looping through all of the results per

page request.

To store the images in the query we

need to add a column to the albums

query called images. For a second there I

felt like I was in the fish tank with Nemo:

(Gill) “From now on, you will be

called....Shark Bait!” (Group) “Shark

Bait...hooo haa haa.” Back to the article.

QueryAddColumn() adds a column

named images and uses the data from

tempArr, which is an empty array, to pop-

ulate the column with data. If you run a

<cfdump var=”#this.albums#”> right

after this line of code you will see some-

thing like Figure 4.

You now see that there is an empty

column named images inside the

this.albums query.

All that’s left is to loop through the

this.albums query, grab all files with .jpg

as the extension, and store them in the

array. Feel free to add other extensions if

you’d like. The sweet thing now is you can

use the Macromedia Flash Video Kit to

create a Flash swf, grap .flv files in a

query, and show Flash video on the same

site as your images without knowing

Flash. I almost showed how to in this

tutorial but I wanted to keep my focus.

Let’s get back to grabbing the jpegs. We

do this by using <cfloop query=

”this.albums”>, notice no # signs around

the query name. This loop will iterate or

repeat four times, based on our results

seen in Figure 3. Each time it loops we are

doing four things:

1. Start the loop; <cfloop...>.

2. Set the temp variable to

assets/pics/[current album name in

query] (example: assets/pics/Christmas

2003).

3. Use <cfdirectory...> to grab all images

from the path stored in the temp vari-

able

4. Add the images to the currentRow of

the this.albums query using

QuerySetCell(query, column name,

value, row).

5. Clear the tempArr array with

ArrayClear(array name).

6. Loop again, if necessary.

Listing 7 is the loop portion of Listing

6. The first line starts the loop of the

this.albums query. Now we can step

through the four things from above (each

number matches a line of code in Listing

7).

Back to the Application.cfm
If you remember, we left off right

after the <cfif NOT isDefined(“Applica-

tion.data_cfc”)> block. I decided to create

another CFC. This CFC helps manage

Session data. Just like the Application

.data_cfc variable we will create a

Session.updates_cfc variable to store a

reference to the new CFC (see Listing 8).

In Listing 8 another <cfif...> block is

utilized to see if the variable albumQ

(short for album query) is defined in the

Session scope. If not, we set the

Session.albumQ variable equal to our

albums query stored in the Ap-

plication.data_cfc.albums variable. With

the query stored in the Session scope we

remove race conditions in the

Application scope, since the Application

scope is site-wide. Each individual visitor

will have his/her own albums query to

access since each visitor will have his/her

own Session. Next we call a custom func-

tion named setDefaults() from the

updates.cfc component. If the Ses-

sion.albumQ variable is defined we set

the Session.picQ (short for picture query)

to a row in the Session.albumQ query. We

determine the row by the Session.cur-

rent.albumID which is set inside the

setDefaults() function or by the visitor

selecting a new album, which we will get

to in a few.

The Helper CFC
(updates.cfc)

I refer to this CFC as “The Helper” sim-

ply because you could do without it, but I

grew tired of having the same lines of

code duplicated in separate parts of the

Application.cfm. Anytime I see myself

repeating the same lines of code or the

same task I tend to create a CFC; if coding

ActionScript I would create a class or

function.

updates.cfc has two instance vari-

ables: defaultAlbum and defaultPic.

defaultAlbum is the row number of the

Session.albumQ variable you want visi-

tors to start with. In Figure 4, by setting

defaultAlbum to 4 the first album a visi-

tor will see is Resurrection Sunday 04 as it

resides in the fourth row of the query.

The same goes for defaultPic and the

query stored in the images column. This

is useful in case you add a new album to

the site and want everyone to see the

new album first. The same goes for new

pictures. There are also two functions

available for public use.

setDefaults sets three Session vari-

ables, then calls the setCurrentPic() func-

tion. Session.current.albumID, by default,

is set to the instance variable this.default-

Album, spoken of earlier. Yes, we could

easily get rid of the variable and place a

number here but it is much cleaner to uti-

lize variables in many cases, this being

one of them. By using a variable I won’t

have to get a search warrant to find the

line of code to change the variable. Of

course there aren’t but 16 lines of code

so it’s not 100% useful here, but we could

always extend the application to allow

each visitor to set their personal default

10 • 2004 MXDJ.COM • 49

fi
g

u
re

 3
fi

g
u

re
 4

50 • MXDJ.COM 10 • 2004

album. In this we could utilize the Client

scope or a datasource (database, xml, etc)

to store the preference and set the

this.defaultAlbum variable to his/her

preference with a Client variable check or

a query. The same goes for the

Session.current.picID variable. The last

variable we set in this function is the cur-

rent album name: Session.current.album.

This variable is used in the front-end code

to properly target the right folder. Lastly

we call the setCurrentPic() function to set

the Session.current.pic variable and strip

the .jpg extension. This function is also

called from the Application.cfm as well.

Finalizing the
Application.cfm

We’re almost ready to create the front

end. The missing piece of necessary func-

tionality is the ability for the visitor to

change albums and pictures. To help you

better understand this section I need to

divulge how the front-end works, if you

haven’t already peeked at my closing and

visited the URL.

The album names are listed in a col-

umn on the left. Each album name is a

link with ?album=# as the link. The # sign

is the row number the album represents

in the Session.albumQ query. When the

visitors click on an album name they are

redirected to index.cfm?album=1 (if they

click on Christmas 2003, based on Figure

3; index.cfm is the filename of the front-

end). The same goes for the images

except the URL will read: index.cfm

?pic=#, where the # sign is the row repre-

sented in the images column of the cur-

rent album in the Session.albumQ query.

So, this is accomplished for the albums

portion in Listing 10.

As seen before, a <cfif...> block is used

to determine if a variable is defined. In

this case, we’re checking for URL.album. If

the variable is defined we do another

check to make sure URL.album is less

than or equal to the total number

(recordCount) of albums in the

Session.albumQ query and URL.album is

greater than or equal to 1. This is another

form of a fail-safe. I had a friend once

argue with me about PHP being better

than CF (no need for “hate-mail” here

folks). He went to one of my sites and

changed a URL variable to a row number

not available in one of my queries and

the site broke, showing one of the lovely

CF errors. He then had ground to stand

on. Since then, when using URL variables,

I add fail-safes like these to prevent user

created/functionally allowed errors. If the

check proves true we simply set the

Session.current.albumID to the

URL.album variable, reset the current

album name (Session.current.album), set

the current picture ID (Session.current

.picID), and call the setCurrentPic() func-

tion inside the Session.updates_cfc com-

ponent instance to set the current pic

name (Session.current.pic). After making

these changes we want to redirect visi-

tors to the current page, index.cfm in our

case, with no URL variable. This removes

the desire to start changing the URL vari-

able to odd numbers or characters. Of

course they can look at the status bar of

their browser to figure out the URL but a

little Javascript to set the status bar text

onMouseOver never hurt anyone (we

won’t cover it but you’ll see it in the

index.cfm file if you download the

source). Yet again, there are still other

ways. The bottom line is we can’t truly

stop someone from finding out the desti-

nation URL of HTML links, to my knowl-

edge, but we can keep their foul play

from breaking our app. Revisiting the

redirect, you’ll notice the <cflocation...>

tag is not enclosed in the internal <cfif...>

block. This is on purpose. If someone

does enter a foul album ID, the <cfloca-

tion...> will still redirect, just without

changing any of the variables.

Pretty much the same thing happens

for the URLpic variable as it follows the

same structure as the URL.album variable

(see Listing 11).

You are now done with all of

Application.cfm (notice the end <cfsi-

lent...> tag). It took me a little over 3

hours to create the core functionality,

including about three versions of edits

for optimization and recodes, and 5 min-

utes to create the front end, not includ-

ing graphic creation as that’s “...not my

bag baby...yeahhhh.”

Setting Up a Front End
I’m not going to cover the HTML

structure, css, and graphic creation in this

article. I’m going to jump directly into the

display of album names, picture thumb-

nails, and viewing large images.

Listing 12 contains all of the code

necessary to run the front end. It is differ-

ent from the other code as it contains the

line numbers. Use this to keep from hav-

ing to paste the entire HTML and show

the page layout. All line numbers refer to

the lines in the index.cfm file I created

(available for download, of course; link in

closing). The following list explains what

each line or block of code performs/han-

dles:

• Line 3: Sets the title of the page based

on the Application.title variable.

Remember, this was one of our param-

fi
g

u
re

 5

MAX ATTENDEES:

MAX ATTENDEES:

Extend your

education with a

FREE 3-time trial

of MXDJ

www.sys-con.com/mx/

specialsubscription.cfm

52 • MXDJ.COM 10 • 2004

eters in the Application.cfm; results

shown in Figure 2.

• Line 49: Outputs the name of the cur-

rent pic being viewed from the

Session.current.pic variable.

• Lines 76–86: Displays all albums in a

column format. I utilized multiple

<cfif...> tags. These tags allow me to

disable the URL of an album and dis-

play an orange greater than sign to the

left of the current album name. This

helps visitors keep track of the current

album they are viewing (same idea as

showing the picture name on Line 49

but “graphical”). After the album name

and link are created a
 starts a

new line so the album names follow a

column format.

• Lines 94–99: Here is where we display

the thumbnail images. The variable

temp is used as a temporary variable

to store the current album query’s

images column which is then looped.

In the loop, an <a...> tag sets the URL,

or href, to ?pic=#currentRow# which

refers to the current row of the query

in the present loop iteration. There is

also a little JavaScript for the

onMouseOver and onMouseOut. The

image is targeted with #Application

.path#/#Session.current.album#/#

name#. This takes the path to the

images, internal folder inside the

image path (the album name), then

the name of the image from the temp

query currently being looped. The alt

text of the <img...> tag is set to the pic

name stored in Session.current.pic for

the tool tip effect. Keeping this in

mind, name your images something

useful (unlike most of my current

images; LOL). DSC0009.jpg isn’t a very

useful name but Family Chillin’ at

South Mountain.jpg gives a much bet-

ter description.

• Lines 107–109: The easiest line of

them all. Simply show an image using

the same path as line 97. The only dif-

ference is we’re not looping through

the query to find the current image by

ID. We already know the name of the

image (Session.current.pic) so we sim-

ply append .jpg. This is where we

saved time by adding an images query

to the albums query earlier.

I’m sure you will be able to follow this

much better once you view the site and

see the outcome. In the meantime, look

at Figure 5 for a sneak peek.

Jeff Garza, AZCFUG manager, brought

to my attention that when leaving the

site and coming back the last album and

image viewed were still being shown and

this may be confusing to some visitors.

He provided Listing 13 to recreate the

CFID and CFTOKEN cookies; therefore, “it

becomes a browser-level cookie that

expires when the browser is closed.” Add

this code snippet to the Application.cfm

(below the blue42 <cfif...> block). Thanks,

Jeff!

Putting It All Together
Ultimately, the result is an application

run entirely by reading one folder and

returning all images inside subfolders.

This is a very useful tool for a simple

photo album mainly due to simplicity of

updates. In order to create a new album

add a new folder inside the assets/pics

folder, upload images, destroy the

Application variable (remember ?blue42?)

to re-query the folders, and voila. To add

more images to a directory simply upload

the desired images to the desired folder. If

you want people to see the images imme-

diately use ?blue42 or just wait until the

Application scope timeouts (or resets; cur-

rently set to 1 day.). You can teach any

client how to update this photo album as

long as you can teach them how to FTP

and create folders. My charge to you is to

extend this application to include a video

player and MP3 player. You can even cre-

ate icons to differentiate between an

image, video, or music album. It won’t

take much...give it a shot!

The kitchen sink wasn’t included in

this article as I left certain things out,

namely <cflock...> tags and some best

practices. With all articles, I never say “this

is THE way to do it” so keep your mind

and options open to other ways of cod-

ing. I do hope this is a very useful article

and that you will be able to utilize the

application for your own photo or media

album. If you do please shoot me an e-

mail and let me know so I can see your

front end and/or upgrades to the func-

tionality. Please provide feedback for my

personal and professional development:

mxdj@jdevinc.com. I’m going to write a

follow-up article combining my August

2004 MXDJ (Vol. 2 Issue 8) article, and this

article to show how a Flash front end,

built with OOP, can be utilized in conjunc-

tion with the already present backend.

Look for more information on my blog,

www.jdevinc.com/blog; visit a working

version of the site, www.jdevinc.com

/tutorials/gallery, and download source

files, www.jdevinc.com/tutorials. See ya

soon!

Acknowledgements
Most of all I want to acknowledge

God for Deut. 8:18, my family (Tia,

Adreana, and soon to be John C. Bland

III), my parents, and my brothers for con-

tinued support. T, thank you for allowing

me time to write! Mad Love! Big thanks to

Sarge, Jeff Garza, Robert Hoekman, the

Flash and Multimedia Users Group of

Arizona (azflash.org), and the Phoenix

ColdFusion Usergroup (azcfug.com). Mad

props to Michael Hagel (michael

hagel.com), for banging out the site

graphics for this app. Keep up the sweet

work!

John C. Bland II is CEO and chief devel-

oper for JDEV Inc. (www.jdevinc.com), a

Phoenix-based new media firm currently

providing Internet consulting and devel-

opment services for many companies

nationwide. John’s strong suit is applica-

tion functionality and he loves utilizing a

combination of Flash, Flash Remoting,

and ColdFusion to build Rich Internet

Applications, Central Applications, and

Web products. He credits a lot of his

growing knowledge to the continued fel-

lowship, support, and communication

within the Flash and Multimedia Users

Group of Arizona and the Phoenix

ColdFusion UserGroup.

mxdj@jdevinc.com

“Whenever I utilize scope
variables I always set up a

way to destroy them”

listin
g

 9
listin

g
 10

listin
g

 11
listin

g
 12

listin
g

 13
li
st

in
g

 1
li
st

in
g

 2
li
st

in
g

 4
li
st

in
g

 5
li
st

in
g

 6
li
st

in
g

 7
li
st

in
g

 8

10 • 2004 MXDJ.COM • 53

<cfsilent>
<cfapplication Sessionmanagement="yes"

Sessiontimeout="#CreateTimeSpan(0,1,0,0)#"
applicationtimeout="#CreateTimeSpan (1,0,0,0)#">

Listing 2
<cfif isDefined("URL.blue42")>
<cfoutput>
<cfset StructClear(Session)>
<cfset StructClear(Application)>

</cfoutput>
</cfif>

Listing 3
<cfparam name="Application.title" type="string" default="Photo
Album">
<cfparam name="Application.path" type="string"
default="assets/pics">

Listing 4
<cfif NOT isDefined("Application.data_cfc")>
<cfset Application.data_cfc = CreateObject("component",
"assets.cfcs.data")>
<cfset Application.data_cfc.setupAlbums()>
</cfif>

Listing 5
<cfcomponent>
<cfset this.albums = "">

<cffunction name="setupAlbums" access="public">
<cfset var temp = "">

<cfset var tempArr = ArrayNew(1)>
<cftry>
<cfcatch type="any">
<cfthrow message="Error in assets/cfc/data.cfc.">

</cfcatch>
</cftry>

</cffunction>
</cfcomponent>

Listing 6
<cffunction name="setupAlbums" access="public">
<cfset var temp = "">
<cfset var tempArr = ArrayNew(1)>
<cftry>

<cfdirectory action="list"
directory="#ExpandPath(Application.path)#" name="this.albums">

<cfset QueryAddColumn(this.albums, "images", tempArr)>
<cfloop query="this.albums">
<cfset temp = Application.path

&”/”&this.albums.name[currentRow]>
<cfdirectory action="list" filter="*.jpg"

directory="#ExpandPath(temp)#" name="temp">
<cfset QuerySetCell(this.albums, "images", temp, currentRow)>
<cfset ArrayClear(tempArr)>

</cfloop>
<cfcatch type="any">
<cfthrow message="Error in assets/cfc/data.cfc.">

</cfcatch>
</cftry>
</cffunction>

Listing 7
<cfloop query="this.albums">
<cfset temp = Application.path&”/”&this.albums.name[currentRow]>
<cfdirectory action="list" filter="*.jpg"
directory="#ExpandPath(temp)#" name="temp">
<cfset QuerySetCell(this.albums, "images", temp, currentRow)>
<cfset ArrayClear(tempArr)>
</cfloop>

Listing 8
<cfif NOT isDefined("Session.albumQ")>

<cfset Session.albumQ = Application.data_cfc.albums>
<cfset Session.updates_cfc = CreateObject("component",

"assets.cfcs.updates")>
<cfset Session.updates_cfc.setDefaults()>

<cfelse>
<cfset Session.picQ =

Session.albumQ.images[Session.current.albumID]>
</cfif>

Listing 9
<cfcomponent>
<cfset this.defaultAlbum = 1>

<cfset this.defaultPic = 1>

<cffunction name="setCurrentPic" access="public">
<cfset Session.current.pic = Session.albumQ.images[Session.cur-

rent.albumID].name[Session.current.picID]>
<cfset Session.current.pic = Mid(Session.current.pic, 1,

len(Session.current.pic)-4)>
</cffunction>

<cffunction name="setDefaults" access="public">
<cfset Session.current.albumID = this.defaultAlbum>
<cfset Session.current.picID = this.defaultPic>
<cfset Session.current.album =

Session.albumQ.name[Session.current.albumID]>
<cfset setCurrentPic()>

</cffunction>
</cfcomponent>

Listing 10
<cfif isDefined("URL.album")>
<cfif URL.album LTE Session.albumQ.recordCount AND URL.album GTE
1>

<cfset Session.current.albumID = URL.album>
<cfset Session.current.album = Session.albumQ.name[Session.cur-

rent.albumID]>
<cfset Session.current.picID = 1>
<cfset Session.updates_cfc.setCurrentPic()>

</cfif>
<cflocation addtoken="no" url="#CGI.SCRIPT_NAME#">
</cfif>

Listing 11
<cfif isDefined("URL.pic")>
<cfif URL.pic LTE Session.picQ.recordCount AND URL.pic GTE 0>
<cfset Session.current.picID = URL.pic>
<cfset Session.updates_cfc.setCurrentPic()>

</cfif>
<cflocation addtoken="no" url="#CGI.SCRIPT_NAME#">
</cfif>
</cfsilent>

Listing 12
3:
<title><cfoutput>#Application.title#</cfoutput></title>
49:
<cfoutput>#Session.current.pic#</cfoutput>
76 - 87:
<cfoutput query="Session.albumQ">
<cfif currentRow NEQ Session.current.albumID>

<a href="?album=#currentRow#" onMouseOut="setStatus('OK...you
can look now.');return document.returnValue;"
onMouseOver="setStatus('Dont look here...');return
document.returnValue;">

<cfelse>
>

</cfif>
#name#

<cfif currentRow NEQ Session.current.albumID>

</cfif>

</cfoutput>
94-99:
<cfset t = Session.albumQ.images[Session.current.albumID]>
<cfoutput query="t">
<a onMouseOut="setStatus('OK...you can look now.');return docu-
ment.returnValue;" onMouseOver="setStatus('Dont look
here...');return document.returnValue;" href="?pic=#currentRow#">

<img src="#Application.path#/#Session.current.album#/#name#"
alt="#Session.current.pic#" width="40" height="40" border="0">

</cfoutput>
107-109:
<cfoutput>
<img src="#Application.path#/#Session.current.album#/#Session.cur-
rent.pic#.jpg">
</cfoutput>

Listing 13
<cfif IsDefined("Cookie.CFID") AND IsDefined("Cookie.CFTOKEN"
)>

<cfset localCFID = Cookie.CFID><None>
<cfset localCFTOKEN = Cookie.CFTOKEN>
<cfcookie name="CFID" value="#localCFID#">
<cfcookie name="CFTOKEN" value="#localCFTOKEN#">

</cfif>

li
st

in
g

 3

Video formats vary in capabilities,

quality, and size. There is no one universal

format that seems to outweigh all others

for every use. Flash video is wonderful

for Web delivery, and for smaller files. If

you need a perfect quality video for a

kiosk MPEG-2 or MPEG-4 may suit your

needs. QuickTime is great for CD delivery,

but there is always the hassle of having

to install applications on the end user’s

machines. Each format has its uses but

this can create some complexity for

developers when trying to author with

multiple formats in mind. There is also the

inevitable occurrence of a late project

video switch that caus-

es some recoding to adapt to a new for-

mat. No one wants to be up late the

night before a large project is due trying

to rebuild everything for the switch, but

is there an easier way to handle this?

Well, since we have gone this far, you

can probably guess that I am going to

say yes, and also explain my approach for

handling this type of problem. As with

any solution this approach will require

some upfront planning, but the benefits

can be reaped many times over. You also

get the benefit of taking what I have

already written and expanding on it,

rather than starting completely from

scratch. Here is the

thought process that I went

through to streamline video playback so

that I would almost never have to deal

with rebuilding the same old video con-

troller again.

My first rule of programming is simply

this. “If you have to do it more than once,

there is probably an easier way.” Any time

you write a new script or behavior look

for anything that can be reused. If you

make a behavior to control a button,

write it so that it can be reused for any

type of button in the future. The basic

concept can apply here as well. When

constructing our video controller we

need to look at ways to make it as flexible

as possible. This means that we don’t

want to commit some common mistakes

like referring to specific sprite numbers,

54 • MXDJ.COM 10 • 2004

frames, or requiring some exact order for

elements to be aligned in the score. The

coding should be as flexible as possible

so any part of the system can be

removed and it can still function.

The next step is to look at the scope

of what we are building. We are creating

a video controller, but we already know

that this will need to support multiple

formats. There are three ways we could

easily handle this, each with their pros

and cons.

1. Write separate behaviors for each

media type.

This can make editing code simple

for each type but also creates a lot of

unnecessary duplication in the code. If

you want to change core functionality

then you have to edit each behavior

separately. Let’s say we decide one day

that we want the rewind button to run

on mouseUp until we click play instead

of while its being held down. If we

have six video formats, that’s six

chunks of code that have to be rewrit-

ten. This is not ideal at all.

2. Write one big behavior.

This is definitely more elegant, as we

have one source to work from. In many

cases I would recommend this route as

it keeps all the necessary code in one

place. An early approach to this behav-

ior that I wrote years ago combined

the code for the video, buttons, slider,

etc., all into one behavior. It’s handy to

not have to keep up with the separate

pieces. But when dealing with so

many formats you can quickly end up

with long chunks of code in a rat’s nest

of “if” and “case” statements. It may be

nice and compact, but debugging is

still a bit harder than it needs to be.

3. Centralize all common code and split

off only the parts that vary.

This approach is what I demonstrate

here. The idea is to carefully plan your

code so that the core behavior will

handle all the general tasks, then you

only split up code that is specific to a

particular media type. We will accom-

plish this through the use of “ances-

tors”.

So what is an ancestor? It doesn’t

mean you have to track your code’s

genealogy, but the same basic concept

applies. Here is a brief example of how an

ancestor can be used.

Let’s say we have two animals – a cat

and a dog. Both are animals, both have

legs, but some properties vary. The fol-

lowing is a simple script for the general

“animal”.

Property pSound, pHasFur

On new me

PHasFur = 1

Return me

End

On putSound me

Put pSound

End

Now let’s create one of each…

Cat = script(“cat”).new()

Cat.putSound()

--“meow”

and a dog…

Dog = script(“dog”).new()

Dog.putSound()

--“arf”

Neither cat nor dog have a proper-

ty named “pSound” built in and neither

have a function called putSound, but

both are able to use these as they have

defined the “animal” script as their

ancestor. Ancestors are similar to par-

ent classes or prototypes. They simply

allow one set of code to inherit all the

properties, methods, and functions of

another.

With this in mind, there are two

ways we can approach our new con-

troller.

1. Create one ancestor for each new

controller type.

2. Create one script that dynamically

selects an ancestor.

Either way is perfectly fine, but for

my uses I think the second option will

be better. With this approach the

ancestor is chosen based on the type

of media it finds. Because the core

behavior is the same, we can swap

media on a sprite over and over again

without ever having to change the

behavior attached to it. This allows us to

focus more on the project at hand, and

worry less about what type of media we

just placed on screen.

The first part of the code we need is

the video controller. This will be placed on

the video sprite and handles all the inter-

action. The behavior has a few key tasks.

1. Determine what type of media we are

using

2. Attach the appropriate ancestor

3. Handle all video events from buttons

(play, pause, seek)

4. Track base properties of the video

Listing 1 is the beginSprite handler.

The first thing we do is to establish

the type of media we are going to utilize.

Using that we can check to see if we have

an available script for that type and

attach it. As long as we name the future

scripts in the same manner we can con-

tinue to add new media types without

ever touching the base code again. This

becomes infinitely scalable with no has-

sles for existing media types.

We then grab the Director movie’s

tempo (it is used by some media types to

10 • 2004 MXDJ.COM • 55

on beginSprite me

--get the member reference

pMember = sprite(spriteNum).member

--get the type

pType = pMember.type

--qt and digital video use the same controller

if pType = #digitalVideo then pType = #quickTimeMedia

--make sure we have a parent script for this type

if me.memberExists(pType && "Video Base") then

--set the ancestor

me.ancestor = script(pType && "Video Base").new()

--make it active

pActive = 1

else

--no parent so deactivate it

pACtive = 0

exit

end if

--container for general settings. Varies for each part

pInfo = [:]

--prep it

pInfo[#baseTempo] = the frameTempo

--call the ancestor to prepare the video

me.prepVideo()

--start it playing

me.doVideo(#play)

end

listing 1

xile written & illustrated by louis f. cuffari 11

calculate rewind and FF intervals) and

run a prepVideo() handler. This is the

first example of a handler that does not

reside anywhere in the base script.

PrepVideo becomes a handler we place

in any new media type script to initialize

and setup calls for that video. For

QuickTime it might be for turning on

Direct-to-Stage. For Flash we may want

to calculate its playback speed/rate. We

look for any common places that we may

need to interact with the media and cre-

ate these universal calls to adapt to each

new type.

The last item we run is the doVideo()

command. This is our base script han-

dler to interpret events from buttons.

We run this with the #play property to

trigger the video to start up immediate-

ly.

Let’s take a quick look at the do-

Video() handler to see how we handle

each event; then we will look at how two

specific media types vary.

on doVideo me, vItem, vParam

if not pActive then exit

case vItem of

#play :

--slow director

me.slowDirector()

--play it

me.playVideo()

If you look at the beginSprite handler

you will see that we disable the script if a

valid ancestor is not found. This prevents

errors on unrecognized types. We check

this at the start of the doVideo command

and exit if we are not active. Next we look

at what command was sent. In this case

we focus on the play command. The

slowDirector call is an option I have writ-

ten into my code to allow Director to

slow its frame rate and allow the video to

claim more of the CPU if necessary. Next

we call the playVideo() call to the ances-

tor to let it start the video. Let’s look at

the Flash and QuickTime versions of the

ancestor scripts to see how they vary for

this command.

Flash:

on playVideo me

sprite(me.spriteNum).fixedRate =

me.pInfo[#playRate]

sprite(me.spriteNum).play()

end

QuickTime:

on playVideo me

sprite(me.spriteNum).movieRate = 1

end

Both trigger the video to start, but

each has a different approach. We now

have the ability to play back two media

types from the same behavior, and can

keep adding more. Let’s add another

popular type – MPEG. MPEG Advance

Xtra is a very popular solution for this, so

here is its variant of this handler.

on playVideo me

sprite(me.spriteNum).rate = 1

sprite(me.spriteNum).play()

end

If we tried to create one large behav-

ior for this we would have a mass of “if”

and “case” statements for every com-

mand. This can make debugging difficult

and gets more complex as we start find-

ing larger and larger variations in how

some media types handle different func-

tions. Here is an example comparing

QuickTime and Flash for rewinding.

QuickTime allows rewinding by sim-

ply setting the movieRate of the sprite to

56 • MXDJ.COM 10 • 2004

“There is no one
universal format

that seems to
outweigh all others

for every use”

10 • 2004 MXDJ.COM • 57

–2. Flash does not allow reverse playback

so we instead have to fake it by calculat-

ing the time elapsed each frame and

reversing the video by 2 times that

amount. Here are the two scripts…

QuickTime:

on rewindVideo me

sprite(me.spriteNum).movieRate = -2

end

Flash:

on rewindVideo me

sprite(me.spriteNum).pause()

--grab the time to fake the rewind

me.pInfo[#lastTime] = the millisec-

onds

end

on rewindStepVideo me

--Fake Rewind since MPEG Advance

does not support it

t = the milliseconds -

me.pInfo[#lastTime]

--backup 2X this ammount

sprite(me.spriteNum).seek(sprite(me.sp

riteNum).currentTIme - (2 * t))

me.pInfo[#lastTime] = the millisec-

onds

end

Flash needs to check this every frame,

while QT simply runs until we change the

rate back. These differences would make

a single script very unmanageable, while

splitting the pieces into separate ances-

tors make this a very simple and elegant

process.

After we code for play, pause,

rewind, seek, etc., we need to make one

more behavior for all the buttons. Since

these buttons all address our core

behavior they do not need any changes

for each media type either. You can

either communicate with scripts directly,

use a sendSprite, or a sendAllSprites call.

Here is a short overview of the differ-

ences.

1. object.function(): This approach calls a

function on a specific object, or sprite.

This can be handy as it runs fast, but if

there is any problem it will throw an

error and stop your program.

2. sendSprite: This is a step up from call-

ing the object directly. It sends a mes-

sage to a specific sprite, but if the

handler is not on that sprite it’s simply

ignored. The down side is you have to

know where everything is. There are

many ways to handle this up front,

but I find for systems where speed is

not an issue, there is another

approach…

3. SendAllSprites: This command broad-

casts a message out to all sprites. If the

sprite has the handler it runs it, other-

wise it’s ignored. This can be a little

slower (a very few milliseconds at

most) but for a flexible system like this

I find it to be very handy. You can

establish buttons that span multiple

frames and move media to different

channels without the worry of any

piece losing sight of the rest of the sys-

tem.

Here is an example of a portion of the

button handler that sends out the play

command…

on mouseUp me

case pWhatItem of

#play, #pause, #stop :

--play, pause or stop was

clicked

sendAllSprites(#doVideo,

pWhatItem)

When we click the button it simply

tells the sprite(s) with a doVideo com-

mand to run the specified command.

This makes it very fast and easy to

deploy solutions that will not break by

moving frames or changing sprite

orders.

You can download the example

movie that demonstrates how to use this

approach for QuickTime, Flash, and

MPEG Advance. I have also utilized this in

various portions for Real Media,

Windows Media, LDMs (Linked Director

Movies), Audio, or other video Xtras.

Creating a new media type is as simple

as copying another ancestor and adjust-

ing the few lines of code that handle the

video playback. The rest is already done

for you and never has to be rewritten

again.

Summary
Ancestors are a powerful way to reuse

and simplify complex systems in lingo.

Give them a try and you will see why it’s

great to be kind to your ancestors.

Advertising Index

Advertiser URL Phone Page

ActivePDF www.activePDF.com 21

CF_Underground VI www.cfconf.org/cf_underground6/ 301-424-3903 Cover 3

CFDynamics www.cfdynamics.com 866-233-9626 6

HostMySite.com www.hostmysite.com/mxdj 877-248-4678 27

InterAKT Online www.interaktonline.com 9

Intermedia.net www.intermedia.net 800-379-7729 31

ISSJ www.ISSJournal.com 888-303-5282 41

IT Solutions Guide www.sys-con.com 201-802-3021 45

Macromedia www.macromedia.com/go/volvo Cover 2

Macromedia Max www.macromedia.com/go/max Cover 4

MX Developer's Journal www.sys-con.com/mx/subscription.cfm 888-303-5282 51

Nidus Corp. www.brainstormer.org 19

Seapine Software www.seapine.com/webdev 888-683-6456 5

ServerSide www.serverside.net 888-682-2544 15

SunTech3 www.SunTech3.com 407-862-1144 16

Web Services Edge 2005 www.sys-con.com/edge 201-802-3066 37

Chuck Neal is CEO of

MediaMacros, Inc.. and

owner and operator of

www.mediamacros.com, a

free Web resource for

Macromedia Director

developers. He has been

involved in multimedia for

over 8 years in both tradi-

tional multimedia as well as

3D animation and video.

Over the years Chuck has

worked on projects for a

number of major clients,

including Coca-Cola,

United Parcel Service, and

Ford Motor Company.

Through MediaMacros, he

strives to push the enve-

lope of multimedia taking

on full projects as well as

offering advanced coding

services to over 40 multi-

media firms in over a

dozen countries around the

globe. chuck@media-

macros.com

58 • MXDJ.COM 10 • 2004

va
n

g
u

a
rd

hen I started to make this video I

was not sure if it would be under-

stood by the world; it hides a

deeper message, it speaks about smoke. Every

day I receive mail from people writing to me for

the designs, for the scenes, for lights. I like that,

but just a few people got the inner message, Ii

hope you feel it. www.micheledauria.com

Inner Meaning

w

